首页> 外文OA文献 >Forecasting quarterly German GDP at monthly intervals using monthly IFO business conditions data
【2h】

Forecasting quarterly German GDP at monthly intervals using monthly IFO business conditions data

机译:使用每月IFO业务状况数据每月预测德国季度GDp

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The paper illustrates and evaluates a Kalman filtering method for forecasting German real GDP at monthly intervals. German real GDP is produced at quarterly intervals but analysts and decision makers often want monthly GDP forecasts. Quarterly GDP could be regressed on monthly indicators, which would pick up monthly feedbacks from the indicators to GDP, but would not pick up implicit monthly feedbacks from GDP onto itself or the indicators. An efficient forecasting model which aims to incorporate all significant correlations in monthlyquarterly data should include all significant monthly feedbacks. We do this with estimated VAR(2) models of quarterly GDP and up to three monthly indicator variables, estimated using a Kalman-filtering-based maximum-likelihood estimation method. Following the method, we estimate monthly and quarterly VAR(2) models of quarterly GDP, monthly industrial production, and monthly, current and expected, business conditions. The business conditions variables are produced by the Ifo Institute from its own surveys. We use early insample data to estimate models and later out-of-sample data to produce and evaluate forecasts. The monthly maximum-likelihood-estimated models produce monthly GDP forecasts. The Kalman filter is used to compute the likelihood in estimation and to produce forecasts. Generally, the monthly German GDP forecasts from 3 to 24 months ahead are competitive with quarterly German GDP forecasts for the same time-span ahead, produced using the same method and the same data in purely quarterly form. However, the present mixed-frequency method produces monthly GDP forecasts for the first two months of a quarter ahead which are more accurate than one-quarter-ahead GDP forecasts based on the purely-quarterly data. Moreover, quarterly models based on purely-quarterly data generally cannot be transformed into monthly models which produce equally accurate intra-quarterly monthly forecasts.
机译:本文说明并评估了一种卡尔曼滤波方法,用于按月间隔预测德国的实际GDP。德国实际国内生产总值每季度间隔一次,但分析家和决策者通常希望获得每月国内总产值预测。季度GDP可以根据月度指标进行回归,这将使指标从月度反馈到GDP,但不会从月度GDP中隐含对自身或指标的月度反馈。一个旨在将所有重要关联纳入月度季度数据的有效预测模型应包括所有重要的每月反馈。我们使用季度GDP的估计VAR(2)模型和最多三个月度指标变量执行此操作,使用基于卡尔曼滤波的最大似然估计方法进行估计。按照该方法,我们估计季度GDP,每月工业生产以及每月,当前和预期的业务状况的每月和季度VAR(2)模型。商业条件变量由Ifo研究所根据其自身的调查得出。我们使用早期的样本数据来估计模型,然后使用样本外的数据来生成和评估预测。每月最大可能性估计模型产生每月GDP预测。卡尔曼滤波器用于计算估计中的似然度并产生预测。一般而言,德国未来3到24个月的月度GDP预测与德国同期对季度的GDP预测具有竞争力,后者使用相同的方法和相同的数据(仅季度形式)得出。但是,目前的混合频率方法会产生一个季度前两个月的每月GDP预测,比基于纯季度数据的提前一个季度的GDP预测更为准确。此外,基于纯季度数据的季度模型通常不能转换为产生同样准确的季度内每月预测的月度模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号