首页> 外文OA文献 >Drawing of micro-structured fibres: circular and non-circular tubes
【2h】

Drawing of micro-structured fibres: circular and non-circular tubes

机译:微结构纤维的绘制:圆形和非圆形管

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A general mathematical framework is presented for modelling the pulling of optical glass fibres in a draw tower. The only modelling assumption is that the fibres are slender; cross-sections along the fibre can have general shape, including the possibility of multiple holes or channels. A key result is to demonstrate how a so-called reduced time variable τ serves as a natural parameter in describing how an axial-stretching problem interacts with the evolution of a general surface-tension-driven transverse flow via a single important function of τ, herein denoted by H (τ), derived from the total rescaled cross-plane perimeter. For any given preform geometry, this function H (τ) may be used to calculate the tension required to produce a given fibre geometry, assuming only that the surface tension is known. Of principal practical interest in applications is the ‘inverse problem’ of determining the initial cross-sectional geometry, and experimental draw parameters, necessary to draw a desired final cross-section. Two case studies involving annular tubes are presented in detail: one involves a cross-section comprising an annular concatenation of sintering near-circular discs, the cross-section of the other is a concentric annulus. These two examples allow us to exemplify and explore two features of the general inverse problem. One is the question of the uniqueness of solutions for a given set of experimental parameters, the other concerns the inherent ill-posedness of the inverse problem. Based on these examples we also give an experimental validation of the general model and discuss some experimental matters, such as buckling and stability. The ramifications for modelling the drawing of fibres with more complicated geometries, and multiple channels, are discussed.
机译:提出了一个通用的数学框架,用于模拟拉伸塔中光学玻璃纤维的牵引。唯一的建模假设是纤维细长。沿着纤维的横截面可以具有大体形状,包括可能有多个孔或通道。一个关键的结果是证明所谓的减少时间变量τ是如何作为自然参数来描述轴向拉伸问题如何通过τ的单个重要函数与一般表面张力驱动的横向流的演化相互作用的,由总的重新缩放的横切面周长得出的本文中用H(τ)表示。对于任何给定的预成型坯几何形状,假设仅已知表面张力,该函数H(τ)可用于计算产生给定纤维几何形状所需的张力。在应用中最主要的实际兴趣是确定初始横截面几何形状和绘制所需最终横截面所必需的实验绘制参数的“反问题”。详细介绍了两个涉及环形管的案例研究:一个涉及横截面,该横截面包括烧结近圆形圆盘的环形连接,另一个横截面是同心环。这两个例子使我们能够举例说明和探索一般反问题的两个特征。一个问题是给定一组实验参数的解的唯一性问题,另一个问题是反问题的固有不适定性。根据这些示例,我们还对通用模型进行了实验验证,并讨论了一些实验问题,例如屈曲和稳定性。讨论了对具有更复杂几何形状和多个通道的纤维拉伸进行建模的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号