首页> 外文OA文献 >Twitter location (sometimes) matters: Exploring the relationship between georeferenced tweet content and nearby feature classes
【2h】

Twitter location (sometimes) matters: Exploring the relationship between georeferenced tweet content and nearby feature classes

机译:Twitter位置(有时)很重要:探讨地理参考推文内容与附近要素类之间的关系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we investigate whether microblogging texts (tweets) produced on mobile devices are related to the geographical locations where they were posted. For this purpose, we correlate tweet topics to areas. In doing so, classified points of interest from OpenStreetMap serve as validation points. We adopted the classification and geolocation of these points to correlate with tweet content by means of manual, supervised, and unsupervised machine learning approaches. Evaluation showed the manual classification approach to be highest quality, followed by the supervised method, and that the unsupervised classification was of low quality. We found that the degree to which tweet content is related to nearby points of interest depends upon topic (that is, upon the OpenStreetMap category). A more general synthesis with prior research leads to the conclusion that the strength of the relationship of tweets and their geographic origin also depends upon geographic scale (where smaller scale correlations are more significant than those of larger scale).
机译:在本文中,我们调查了在移动设备上生成的微博文本(推文)是否与发布它们的地理位置有关。为此,我们将推特主题与区域相关联。这样,OpenStreetMap中的分类兴趣点就可以用作验证点。我们通过手动,监督和无监督的机器学习方法,将这些点的分类和地理位置与推文的内容相关联。评估显示,手动分类方法的质量最高,其次是监督方法,而无监督分类的质量低。我们发现推文内容与附近的兴趣点相关的程度取决于主题(即,取决于OpenStreetMap类别)。与先前研究的更一般的综合得出这样的结论,即推文与它们的地理起源之间的关系的强度也取决于地理范围(较小范围的关联比较大范围的关联更重要)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号