首页> 外文OA文献 >Disaggregating census data for population mapping using random forests with remotely-sensed and ancillary data
【2h】

Disaggregating census data for population mapping using random forests with remotely-sensed and ancillary data

机译:使用具有遥感和辅助数据的随机森林对人口测绘的人口普查数据进行分解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

High resolution, contemporary data on human population distributions are vital for measuring impacts of population growth, monitoring human-environment interactions and for planning and policy development. Many methods are used to disaggregate census data and predict population densities for finer scale, gridded population data sets. We present a new semi-automated dasymetric modeling approach that incorporates detailed census and ancillary data in a flexible, “Random Forest” estimation technique. We outline the combination of widely available, remotely-sensed and geospatial data that contribute to the modeled dasymetric weights and then use the Random Forest model to generate a gridded prediction of population density at ~100 m spatial resolution. This prediction layer is then used as the weighting surface to perform dasymetric redistribution of the census counts at a country level. As a case study we compare the new algorithm and its products for three countries (Vietnam, Cambodia, and Kenya) with other common gridded population data production methodologies. We discuss the advantages of the new method and increases over the accuracy and flexibility of those previous approaches. Finally, we outline how this algorithm will be extended to provide freely-available gridded population data sets for Africa, Asia and Latin America
机译:关于人口分布的高分辨率,当代数据对于衡量人口增长的影响,监测人与环境的相互作用以及规划和政策制定至关重要。许多方法用于分解人口普查数据并预测更小规模的网格化人口数据集的人口密度。我们提出了一种新的半自动等轴测距建模方法,该方法在灵活的“随机森林”估计技术中结合了详细的人口普查和辅助数据。我们概述了广泛可用的,遥感的和地理空间数据的组合,这些数据有助于建模的权重计算,然后使用随机森林模型以〜100 m空间分辨率生成人口密度的网格化预测。然后将此预测层用作权重面,以在国家/地区级别上进行普查计数的dasymetric重新分配。作为案例研究,我们将三个国家(越南,柬埔寨和肯尼亚)的新算法及其产品与其他常见的网格化人口数据生成方法进行了比较。我们讨论了新方法的优点,并讨论了先前方法的准确性和灵活性。最后,我们概述了如何扩展该算法以提供非洲,亚洲和拉丁美洲的免费可用网格化人口数据集

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号