首页> 外文OA文献 >Efficient Budget Allocation with Accuracy Guarantees for Crowdsourcing Classification Tasks
【2h】

Efficient Budget Allocation with Accuracy Guarantees for Crowdsourcing Classification Tasks

机译:为众包分类任务提供准确保证的有效预算分配

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we address the problem of budget allocation for redundantly crowdsourcing a set of classification tasks where a key challenge is to find a trade–off between the total cost and the accuracy of estimation. We propose CrowdBudget, an agent–based budget allocation algorithm, that efficiently divides a given budget among different tasks in order to achieve low estimation error. In particular, we prove that CrowdBudget can achieve at most max{0, K/2 ? O (?B)} estimation error with high probability, where K is the num- ber of tasks and B is the budget size. This result significantly outperforms the current best theoretical guarantee from Karger et al. In addition, we demonstrate that our algorithm outperforms existing methods by up to 40% in experiments based on real–world data from a prominent database of crowdsourced classification responses.
机译:在本文中,我们解决了将一组分类任务冗余众包的预算分配问题,其中关键的挑战是在总成本和估计准确性之间寻找折衷方案。我们提出了基于代理的预算分配算法CrowdB​​udget,该算法可将给定预算有效地分配给不同任务,以实现低估计误差。特别地,我们证明了CrowdB​​udget最多可以达到max {0,K / 2? O(?B)}估计误差的概率很高,其中K是任务数,B是预算规模。这一结果大大优于Karger等人目前的最佳理论保证。此外,在基于众包分类响应的著名数据库的真实世界数据的实验中,我们证明了我们的算法性能比现有方法高40%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号