首页> 外文OA文献 >AN INVESTIGATION OF FEATURE MODELS FOR MUSIC GENRE CLASSIFICATION USING THE SUPPORT VECTOR CLASSIFIER
【2h】

AN INVESTIGATION OF FEATURE MODELS FOR MUSIC GENRE CLASSIFICATION USING THE SUPPORT VECTOR CLASSIFIER

机译:利用支持向量分类器对音乐分类特征模型的研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In music genre classification the decision time is typically of the order of several seconds, however, most automatic music genre classification systems focus on short time features derived from 10?50ms. This work investigates two models, the multivariate Gaussian model and the multivariate autoregressive model for modelling short time features. Furthermore, it was investigated how these models can be integrated over a segment of short time features into a kernel such that a support vector machine can be applied. Two kernels with this property were considered, the convolution kernel and product probability kernel. In order to examine the different methods an 11 genre music setup was utilized. In this setup the Mel Frequency Cepstral Coefficients were used as short time features. The accuracy of the best performing model on this data set was 44% compared to a human performance of 52% on the same data set.
机译:在音乐流派分类中,决策时间通常为几秒钟左右,但是,大多数自动音乐流派分类系统都将重点放在从10到50ms得出的短时特征上。这项工作研究了两个模型,用于建模短期特征的多元高斯模型和多元自回归模型。此外,研究了如何将这些模型在短时间特征的一部分上集成到内核中,从而可以应用支持向量机。考虑了具有此属性的两个内核,即卷积内核和乘积概率内核。为了检查不同的方法,使用了11种流派的音乐设置。在此设置中,梅尔频率倒谱系数用作短时特征。该数据集上表现最佳的模型的准确性为44%,而同一数据集上的人类绩效为52%。

著录项

  • 作者

    Shawe-Taylor J S; Meng A;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号