首页> 外文OA文献 >Detection and classification of oil spills in MODIS satellite imagery
【2h】

Detection and classification of oil spills in MODIS satellite imagery

机译:mODIs卫星图像中溢油的检测与分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Using satellite imagery to achieve an early and accurate identification of oil spills will contribute towards the reduction of their impact on the marine ecosystem. Satellite imagery provided by the synthetic aperture radar (SAR) sensors are widely used for this task over the multi-temporal and multi-band visible near infra-red (VNIR) sensors. This is due to the SAR imaging capabilities through clouds, dust storms, soot and at night times, which limit the capability of VNIR sensors. However, gaps in knowledge exist regarding whether satellite ocean-colour sensors are capable of identifying unreported oil spills as true positives and whether they are able to discriminate them from lookalikes with the least uncertainty, particularly in arid land regions characterised with nearly cloud-free conditions. It was therefore, the goal of this research to develop reliable and robust methodology for data processing and interpretation of oil spills observed by VNIR sensors.The Moderate Resolution Imaging Spectroradiometer (MODIS) is a VNIR-type sensor that was selected for this project for a number of reasons: it is characterised with adequate multi-spectral features (36 spectral bands 0.405-14.385 ?m) spread over three spatial resolutions (250, 500 and 1000 m); and its data is freely distributed in near-realtime. MODIS bio-geophysical products processed in this study such as sea surface temperature (SST4 and SST) and chlorophyll-a (Chlor-a) have also proven their usefulness in providing complementary data.As a result of this investigation, two methods were proposed: The spectral contrast shift (SCS) and the surface algal bloom index (SABI).The SCS identifies oil spills and classifies their thickness by using MODIS extreme (maximum and minimum) top-of-atmosphere radiance (TOA) values in the 250 m/pixel resolution bands: the red (?1=645 nm) and the NIR (?2 =859 nm) measured over a relatively small area selected to encompass part of an unknown class and part of the surrounding pure sea water. The method has produced consistent and highly sensitive results independent of sun-glint illuminations. Oil spills have SCS values lying within the range 0.02-0.04±0.002 varying by 0.01 corresponding to different thicknesses of oil. The SCS succeeded also in classifying surface floating blooms having SCS values greater than or equal to 0.20.The SABI is a four-band relationship, which according to MODIS 500 m/pixel resolution, is made up of the difference between the TOA radiance responses in the NIR and the red bands (aggregated from the 250 m resolution group) to the sum of the TOA radiance responses in the blue (?3=469 nm) and green (?4=555 nm) bands. The SABI aims to discriminate biological floating species that may appear as an oil spill look-alike without the need to perform complex corrections for atmosphere and sun-glint effects. The SABI succeeded in classifying 95% of surface blooms that had values greater than or equal to a baseline value of -0.10. Oil spills, however, always appear at values lower than the surface bloom baseline value.
机译:利用卫星图像实现对溢油的早期和准确识别,将有助于减少溢油对海洋生态系统的影响。由合成孔径雷达(SAR)传感器提供的卫星图像在多时间和多波段可见近红外(VNIR)传感器上被广泛用于此任务。这是由于通过云,沙尘暴,烟灰和夜间的SAR成像能力限制了VNIR传感器的能力。但是,关于卫星海洋颜色传感器是否能够将未报告的漏油识别为真正的阳性,以及是否能够以最小的不确定性将它们与类似物区分开来,尤其是在特征在于几乎没有云的干旱土地地区,知识上存在差距。因此,本研究的目的是开发可靠和可靠的方法来对VNIR传感器观测到的溢油进行数据处理和解释。中分辨率成像光谱仪(MODIS)是VNIR型传感器,在该项目中被选择用于原因数量:它的特征是在三个空间分辨率(250、500和1000 m)上分布有足够的多光谱特征(36个光谱带0.405-14.385μm);并且其数据几乎实时地免费分发。本研究中处理的MODIS生物地球物理产品,如海表温度(SST4和SST)和叶绿素a(Chlor-a)也已证明其在提供补充数据方面的有用性。作为这项研究的结果,提出了两种方法:光谱对比度偏移(SCS)和表面藻华指数(SABI).SCS通过使用250 m / m的MODIS极端(最大和最小)大气顶辐射度(TOA)值识别漏油并对其厚度进行分类。像素分辨率带:在相对较小的区域内测得的红色(λ1= 645 nm)和NIR(λ2= 859 nm),被选择为涵盖部分未知类别和部分纯净海水。该方法产生了一致且高度敏感的结果,而不受阳光照射的影响。溢油的SCS值在0.02-0.04±0.002的范围内,变化0.01对应于不同的油厚度。 SCS还成功地对SCS值大于或等于0.20的表面浮华进行了分类。SABI是一种四波段关系,根据MODIS 500 m /像素分辨率,它由TOA辐射响应之间的差异组成。 NIR和红色波段(从250 m分辨率组汇总)到蓝色(?3 = 469 nm)和绿色(?4 = 555 nm)波段的TOA辐射响应之和。 SABI旨在区分看起来像溢油的生物漂浮物,而无需对大气和日照效应进行复杂的校正。 SABI成功地对95%的表面光亮进行了分类,这些表面光亮的值大于或等于基准值-0.10。但是,漏油总是以低于表面起霜基线值的值出现。

著录项

  • 作者

    Alawadi Fahad A.M.;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号