首页> 外文OA文献 >Global oceanographic variational data assimilation of in-situ observations and space-borne altimeter data for reanalysis applications
【2h】

Global oceanographic variational data assimilation of in-situ observations and space-borne altimeter data for reanalysis applications

机译:用于再分析应用的全球海洋学变异数据同化现场观测和星载高度计数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The study of global climatological trends requires the accurate analysis surface and sub-surface ocean state. In the last two decades, altimetric satellite missions have been launched with the aim of monitoring the sea level height variability, in time and space. This information may in turn be used, within data assimilation systems, for adjusting the column-integrated density fields in synergy with in-situ observations. The impact of the Sea Level Anomaly (SLA) data has been recently proved positive in many regional and global data assimilation system. However, gaining a positive impact from altimetric data needs i) the establishment of a correct strategy for updating temperature and salinity fields accordingly; ii) the correct assessment of the Mean Dynamic Topography to add to the anomaly data; iii) the consistency between the scales represented by the SLA data and those resolved by the ocean model.At the National Institute for Geophysics and Volcanology (INGV) and the Euro-Mediterranean Centre for Climate Change (CMCC), the former reduced-rank Optimal Interpolation (OI) analysis system (Bellucci et al., 2007) was used to produce ocean reanalysis for the last four decades. It has recently been replaced with a three-dimensional variational data assimilation system, which uses a First Guess at appropriate Time (FGAT) algorithm. The 3DVAR/FGAT formulation is adapted from the one operationally used for producing daily analysis in the Mediterranean basin (Dobricic et al., 2008), and is able to successfully assimilate satellite sea-level anomaly observations.
机译:对全球气候趋势的研究需要对表层和表层下海洋状态进行准确分析。在过去的二十年中,已经发射了高空卫星任务,目的是监测时空的海平面高度变化。该信息继而可以在数据同化系统内用于与原位观测协同调整列积分密度场。最近,在许多区域和全球数据同化系统中,海平面异常(SLA)数据的影响已被证明是积极的。但是,从高空数据需求中获得积极影响是:i)建立正确的策略来相应地更新温度和盐度场; ii)对平均动态地形的正确评估,以添加到异常数据中; iii)SLA数据所代表的尺度与海洋模型所解析的尺度之间的一致性。在国家地球物理与火山研究所(INGV)和欧洲地中海气候变化中心(CMCC)时,前降级最优在过去的四十年中,使用插值(OI)分析系统(Bellucci等,2007)进行了海洋再分析。最近,它已被三维变体数据同化系统所替代,该系统使用“适当时间优先猜测”(FGAT)算法。 3DVAR / FGAT公式改编自用于地中海盆地日常分析的可操作公式(Dobricic等人,2008),并且能够成功地吸收卫星海平面异常观测值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号