首页> 外文OA文献 >Neural network multispectral satellite images classification of volcanic ash plumes in a cloudy scenario
【2h】

Neural network multispectral satellite images classification of volcanic ash plumes in a cloudy scenario

机译:多云场景下火山灰羽流的神经网络多光谱卫星影像分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This work shows the potential use of neural networks in the characterization of eruptive events monitored by satellite, through fast and automatic classification of multispectral images. The algorithm has been developed for the MODIS instrument and can easily be extended to other similar sensors. Six classes have been defined paying particular attention to image regions that represent the different surfaces that couldpossibly be found under volcanic ash clouds. Complex cloudy scenarios composed by images collected during the Icelandic eruptions of the Eyjafjallajökull (2010) and Grimsvötn (2011) volcanoes have been considered as test cases. A sensitivity analysis on the MODIS TIR and VIS channels has been performedto optimize the algorithm. The neural network has been trained with the first image of the dataset, while the remaining data have been considered as independent validation sets. Finally, the neural network classifier’s results have been compared with maps classified with several interactive procedures performed in a consolidated operational framework. This comparison shows that the automatic methodology proposedachieves a very promising performance, showing an overall accuracy greater than 84%, for the Eyjafjallajökull event, and equal to 74% for the Grimsvötn event.
机译:这项工作通过快速自动分类多光谱图像,展示了神经网络在表征卫星监测的爆发事件中的潜在用途。该算法是为MODIS仪器开发的,可以轻松扩展到其他类似的传感器。定义了六类,特别注意代表可能在火山灰云下发现的不同表面的图像区域。由冰岛Eyjafjallajökull(2010)和Grimsvötn(2011)火山喷发收集的图像组成的复杂阴天场景已被视为测试案例。已经对MODIS TIR和VIS通道进行了灵敏度分析,以优化算法。用数据集的第一张图像训练了神经网络,而其余数据被视为独立的验证集。最后,将神经网络分类器的结果与通过在合并的操作框架中执行的几种交互式程序进行分类的地图进行了比较。这种比较表明,所提出的自动方法取得了非常有希望的性能,对于Eyjafjallajökull事件而言,其总体准确性大于84%,对于Grimsvötn事件而言,其总体准确性为74%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号