首页> 外文OA文献 >Near real-time monitoring of buried oil pipeline right-of-way for third-party incursion
【2h】

Near real-time monitoring of buried oil pipeline right-of-way for third-party incursion

机译:对第三方入侵的埋地输油管道实时近距离监测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many security systems employing different methods have been proposed to protect buried oil pipelines transporting petroleum products from the well head via the refinery to: depots and other receiving stations. Currently there is a security gap in the monitoring of these buried pipelines in real time and in keeping them protected from third party interference. This thesis addresses the problem of monitoring these systems by developing an automated image analysis system with the aid of a low-cost multisensory Unmanned Aerial Vehicle (UAV) for monitoring of buried pipeline right-of-way (ROW). The method used in this research is based on the identification of threat objects of interest from the video frame sequences of the pipeline right-of-way acquired by the UAV. This is achieved by training the system to recognise objects of interest using trained correlation filters. To determine the geographical location of detected objects, the Video frame sequences captured by the UAV platform were ortho-rectified to form ortho-images which were then mosaicked to form a seamless Digital Surface Model (DSM) covering the test area using a photogrammetry model. The DSM formed from the mosaicking of ortho-images is then emerged with a digital globe for geo-referencing of detected objects. Experiments were carried out on a test field located in United Kingdom and Nigeria, where video and telemetry data were collected, then processed using the techniques created in this research. The results demonstrated that the developed correlation filter was able to detect objects of interest despite the distortions that come with the object image, due to the fact that the expected distortion was compensated for using the training images. When compared with the 6 control points in the digital globe the accuracy of the two-dimension DSM gave a misalignment error of between 2 and 3 metres.
机译:已经提出了许多采用不同方法的安全系统,以保护将石油产品从井口经精炼厂运输到仓库和其他接收站的地下输油管道。当前,在实时监视这些地下管道并保护它们免受第三方干扰方面存在安全漏洞。本论文通过开发一种低成本的多传感器无人飞行器(UAV)来监视埋地管道通行权(ROW)的自动化图像分析系统,解决了监视这些系统的问题。本研究中使用的方法基于从无人机获取的管道通行权的视频帧序列中识别出感兴趣的威胁对象。这是通过使用经过训练的相关滤波器训练系统识别感兴趣的对象来实现的。为了确定检测到的物体的地理位置,对UAV平台捕获的视频帧序列进行正射矫正以形成正射影像,然后将其镶嵌以形成无缝的数字表面模型(DSM),并使用摄影测量模型覆盖测试区域。然后,将通过正交图像镶嵌形成的DSM与数字地球仪一起出现,以对检测到的对象进行地理参考。在英国和尼日利亚的测试现场进行了实验,在那里收集了视频和遥测数据,然后使用本研究中创建的技术对其进行了处理。结果表明,尽管目标图像附带了失真,但由于使用训练图像可以补偿预期的失真,因此开发的相关滤波器能够检测到感兴趣的目标。与数字地球仪中的6个控制点进行比较时,二维DSM的精度给出了2到3米之间的未对准误差。

著录项

  • 作者

    Olawale Babatunde Olumide;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号