首页> 外文OA文献 >DaSH: a benchmark suite for hybrid dataflow and shared memory programming models: with comparative evaluation of three hybrid dataflow models
【2h】

DaSH: a benchmark suite for hybrid dataflow and shared memory programming models: with comparative evaluation of three hybrid dataflow models

机译:DasH:混合数据流和共享内存编程模型的基准套件:对三种混合数据流模型进行比较评估

摘要

The current trend in development of parallel programming models is to combine different well established models into a single programming model in order to support efficient implementation of a wide range of real world applications. The dataflow model has particularly managed to recapture the interest of the research community due to its ability to express parallelism efficiently. Thus, a number of recently proposed hybrid parallel programming models combine dataflow and traditional shared memory. Their findings have influenced the introduction of task dependency in the recently published OpenMP 4.0 standard.ududIn this paper, we present DaSH - the first comprehensive benchmark suite for hybrid dataflow and shared memory programming models. DaSH features 11 benchmarks, each representing one of the Berkeley dwarfs that capture patterns of communication and computation common to a wide range of emerging applications. We also include sequential and shared-memory implementations based on OpenMP and TBB to facilitate easy comparison between hybrid dataflow implementations and traditional shared memory implementations based on work-sharing and/or tasks. Finally, we use DaSH to evaluate three different hybrid dataflow models, identify their advantages and shortcomings, and motivate further research on their characteristics.
机译:并行编程模型发展的当前趋势是将成熟的不同模型组合成一个编程模型,以支持各种现实应用的有效实现。数据流模型由于能够有效地表达并行性而特别成功地引起了研究界的关注。因此,许多最近提出的混合并行编程模型将数据流和传统的共享内存结合在一起。他们的发现影响了最近发布的OpenMP 4.0标准中任务依赖的引入。 ud ud在本文中,我们介绍了DaSH-第一个用于混合数据流和共享内存编程模型的综合基准套件。 DaSH具有11个基准,每个基准代表伯克利矮人之一,它捕获了广泛的新兴应用程序所共有的通信和计算模式。我们还包括基于OpenMP和TBB的顺序和共享内存实现,以方便在混合数据流实现与基于工作共享和/或任务的传统共享内存实现之间轻松进行比较。最后,我们使用DaSH评估三种不同的混合数据流模型,确定它们的优缺点,并激发对其特性的进一步研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号