首页> 外文OA文献 >Scalable sequential data assimilation with the Parallel Data Assimilation Framework PDAF
【2h】

Scalable sequential data assimilation with the Parallel Data Assimilation Framework PDAF

机译:使用parallel Data assimilation Framework pDaF进行可扩展的顺序数据同化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Data assimilation applications with high-dimensionaludnumerical models exhibit extreme requirements on computational resources. Good scalability of the assimilation system is necessary to make these applications feasible. Sequential data assimilation methods based on ensemble forecasts, like ensemble-based Kalman filters, provide such good scalability, because the forecast of each ensemble member can be performed independently. However, this parallelism has to be combined with the parallelization of both the numerical model and the data assimilation algorithm. In order to simplify the implementation of scalable data assimilation systems based on existing numerical models, the Parallel Data Assimilation Framework PDAF [http://pdaf.awi.de] has been developed. PDAF is suitable for educational use with toy models but also for high-dimensional applications and operational use. PDAF is distributed as open source software. PDAF provides a framework for implementing a data assimilation system with parallel ensemble forecasts and parallel numerical models. For maximum efficiency, a single assimilation program can be built that includes both the model and the analysis step. A well-defined interface connectsudPDAF to the model as well as to the observations. To compute the analysis, PDAF provides several optimized parallel filter algorithms and smoothers. Included are ensemble filters like the Local Ensemble Transform Kalman Filter (LETKF) and the Error Subspace Transform Kalman Filter (ESTKF).udWe discuss the philosophy behind PDAF as well as features and scalability of data assimilation systems based on PDAF on the example of data assimilation with the finite element ocean model FEOM.
机译:具有高维数字模型的数据同化应用程序对计算资源表现出极大的要求。为了使这些应用程序可行,同化系统必须具有良好的可伸缩性。基于集合预测的顺序数据同化方法(例如基于集合的卡尔曼滤波器)提供了良好的可伸缩性,因为每个集合成员的预测都可以独立执行。但是,这种并行性必须与数值模型和数据同化算法的并行化结合在一起。为了简化基于现有数值模型的可伸缩数据同化系统的实现,已经开发了并行数据同化框架PDAF [http://pdaf.awi.de]。 PDAF适用于玩具模型的教育用途,也适用于高尺寸应用和操作用途。 PDAF作为开源软件分发。 PDAF提供了一个框架,用于实现具有并行总体预报和并行数值模型的数据同化系统。为了获得最大的效率,可以构建一个包含模型和分析步骤的同化程序。定义明确的接口将 udPDAF连接到模型以及观察值。为了计算分析结果,PDAF提供了几种优化的并行滤波器算法和平滑器。其中包括集成滤波器,例如局部集成变换卡尔曼滤波器(LETKF)和错误子空间变换卡尔曼滤波器(ESTKF)。 ud我们以数据示例为例,讨论了PDAF的原理以及基于PDAF的数据同化系统的功能和可伸缩性。与有限元海洋模型FEOM同化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号