首页> 外文OA文献 >Non-linear dynamical signal characterization for prediction of defibrillation success through machine learning
【2h】

Non-linear dynamical signal characterization for prediction of defibrillation success through machine learning

机译:用于通过机器学习预测除颤成功的非线性动态信号表征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract Background Ventricular Fibrillation (VF) is a common presenting dysrhythmia in the setting of cardiac arrest whose main treatment is defibrillation through direct current countershock to achieve return of spontaneous circulation. However, often defibrillation is unsuccessful and may even lead to the transition of VF to more nefarious rhythms such as asystole or pulseless electrical activity. Multiple methods have been proposed for predicting defibrillation success based on examination of the VF waveform. To date, however, no analytical technique has been widely accepted. We developed a unique approach of computational VF waveform analysis, with and without addition of the signal of end-tidal carbon dioxide (PetCO2), using advanced machine learning algorithms. We compare these results with those obtained using the Amplitude Spectral Area (AMSA) technique. Methods A total of 90 pre-countershock ECG signals were analyzed form an accessible preshosptial cardiac arrest database. A unified predictive model, based on signal processing and machine learning, was developed with time-series and dual-tree complex wavelet transform features. Upon selection of correlated variables, a parametrically optimized support vector machine (SVM) model was trained for predicting outcomes on the test sets. Training and testing was performed with nested 10-fold cross validation and 6–10 features for each test fold. Results The integrative model performs real-time, short-term (7.8 second) analysis of the Electrocardiogram (ECG). For a total of 90 signals, 34 successful and 56 unsuccessful defibrillations were classified with an average Accuracy and Receiver Operator Characteristic (ROC) Area Under the Curve (AUC) of 82.2% and 85%, respectively. Incorporation of the end-tidal carbon dioxide signal boosted Accuracy and ROC AUC to 83.3% and 93.8%, respectively, for a smaller dataset containing 48 signals. VF analysis using AMSA resulted in accuracy and ROC AUC of 64.6% and 60.9%, respectively. Conclusion We report the development and first-use of a nontraditional non-linear method of analyzing the VF ECG signal, yielding high predictive accuracies of defibrillation success. Furthermore, incorporation of features from the PetCO2 signal noticeably increased model robustness. These predictive capabilities should further improve with the availability of a larger database.
机译:摘要背景心室纤颤(VF)是心脏骤停时常见的心律不齐,其主要治疗方法是通过直流电休克除颤以恢复自发性循环。然而,通常除颤是不成功的,甚至可能导致VF过渡到更有害的心律,例如心搏停止或无脉动电活动。已经提出了基于对VF波形的检查来预测除颤成功的多种方法。然而,迄今为止,没有分析技术被广泛接受。我们使用先进的机器学习算法,开发了一种独特的计算VF波形分析的方法,可以添加或不添加潮气中二氧化碳(PetCO2)信号。我们将这些结果与使用幅度谱区域(AMSA)技术获得的结果进行比较。方法通过可访问的手足前性心脏骤停数据库分析了总共90次抗震前心电信号。开发了基于信号处理和机器学习的统一预测模型,该模型具有时间序列和双树复数小波变换功能。选择相关变量后,对参数优化的支持向量机(SVM)模型进行了训练,以预测测试集上的结果。培训和测试使用嵌套的10倍交叉验证和每个测试折叠6–10个功能进行。结果集成模型对心电图(ECG)进行实时,短期(7.8秒)分析。对于总共90个信号,对34个成功的除颤和56个不成功的除颤进行了分类,其平均准确度和接收器操作员特征(ROC)曲线下面积(AUC)分别为82.2%和85%。对于包含48个信号的较小数据集,潮气末二氧化碳信号的并入将Accuracy和ROC AUC分别提高到83.3%和93.8%。使用AMSA的VF分析得出的准确度和ROC AUC分别为64.6%和60.9%。结论我们报告了一种非传统的非线性方法来分析VF ECG信号的发展和首次使用,该方法具有很高的除颤成功率的预测准确性。此外,PetCO2信号的特征合并显着提高了模型的鲁棒性。随着大型数据库的可用性,这些预测功能应进一步提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号