首页> 外文OA文献 >On the suitability of resampling techniques for the class imbalance problem in credit scoring
【2h】

On the suitability of resampling techniques for the class imbalance problem in credit scoring

机译:论重新取样技术对信用评分中类不平衡问题的适用性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In real-life credit scoring applications, the case in which the class of defaulters is under-represented in comparison with the class of non-defaulters is a very common situation, but it has still received little attention. The present paper investigates the suitability and performance of several resampling techniques when applied in conjunction with statistical and artificial intelligence prediction models over five real-world credit data sets, which have artificially been modified to derive different imbalance ratios (proportion of defaulters and non-defaulters examples). Experimental results demonstrate that the use of resampling methods consistently improves the performance given by the original imbalanced data. Besides, it is also important to note that in general, over-sampling techniques perform better than any under-sampling approach.
机译:在现实的信用评分应用中,与非违约者类别相比,违约者类别的代表性不足的情况是非常普遍的情况,但仍很少引起注意。本文研究了在五个真实信用数据集上与统计和人工智能预测模型结合使用时,几种重采样技术的适用性和性能,这些信用模型已经过人工修改以得出不同的失衡比率(违约者和非违约者的比例)例子)。实验结果表明,重采样方法的使用不断提高了原始不平衡数据所提供的性能。此外,还需要注意的是,总体而言,过采样技术的性能要优于任何欠采样方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号