首页> 外文OA文献 >Revisiting the Gauss-Huard Algorithm for the Solution of Linear Systems on Graphics Accelerators
【2h】

Revisiting the Gauss-Huard Algorithm for the Solution of Linear Systems on Graphics Accelerators

机译:重新审视Gauss-Huard算法在图形加速器上求解线性系统

摘要

In 1979, P. Huard presented an efficient variant of the Gauss-Jordan elimination for the solution of linear systems. In particular, this alternative algorithm exhibits the same computational cost as the traditional LU-based solver, and is considerably cheaper than the Gauss-Jordan algorithm, but there exist no recent high performance implementations of the Gauss-Huard (GH) variant that allow a comparison of these approaches. In this paper we present a reliable GH solver for hybrid platforms equipped with conventional multi-core technology and a graphics processing unit (GPU). The experimental results show that the GH algorithm can beat high performance versions of the LU solver, from tuned libraries for CPU-GPU servers such as MAGMA, for problems of small to moderate scale.
机译:1979年,P。Huard提出了一种有效的高斯-乔丹消去方法,用于解决线性系统问题。特别是,这种替代算法的计算成本与传统的基于LU的求解器相同,并且比Gauss-Jordan算法便宜得多,但是最近还没有实现Gauss-Huard(GH)变体的高性能实现。这些方法的比较。在本文中,我们为混合平台提供了可靠的GH解算器,该混合器配备了传统的多核技术和图形处理单元(GPU)。实验结果表明,对于小到中等规模的问题,GH算法可以击败针对CPU-GPU服务器(如MAGMA)的优化库中LU求解器的高性能版本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号