首页> 外文OA文献 >ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems
【2h】

ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems

机译:parEGO:一种混合算法,具有在线景观近似,可用于昂贵的多目标优化问题

摘要

This paper concerns multiobjective optimization in scenarios where each solution evaluation is financially and/or temporally expensive. We make use of nine relatively low-dimensional, nonpathological, real-valued functions, such as arise in many applications, and assess the performance of two algorithms after just 100 and 250 (or 260) function evaluations. The results show that NSGA-II, a popular multiobjective evolutionary algorithm, performs well compared with random search, even within the restricted number of evaluations used. A significantly better performance (particularly, in the worst case) is, however, achieved on our test set by an algorithm proposed herein - ParEGO - which is an extension of the single-objective efficient global optimization (EGO) algorithm of Jones ParEGO uses a design-of-experiments inspired initialization procedure and learns a Gaussian processes model of the search landscape, which is updated after every function evaluation. Overall, ParEGO exhibits a promising performance for multiobjective optimization problems where evaluations are expensive or otherwise restricted in number. © 2006 IEEE.
机译:本文涉及在每个解决方案评估在财务和/或时间上都很昂贵的情况下的多目标优化。我们利用了9种相对低维的,非病理的,实值函数(例如在许多应用程序中出现的函数),并仅在进行了100和250(或260)个函数评估后评估了两种算法的性能。结果表明,NSGA-II是一种流行的多目标进化算法,与随机搜索相比,即使在使用的评估数量有限的情况下,其效果也很好。但是,通过本文提出的算法ParEGO在我们的测试集上获得了明显更好的性能(尤其是在最坏的情况下),该算法是Jones ParEGO的单目标高效全局优化(EGO)算法的扩展。实验设计启发了初始化过程,并学习了搜索格局的高斯过程模型,该模型在每次函数评估后都会更新。总体而言,ParEGO在评估昂贵或数量有限的多目标优化问题上表现出令人鼓舞的性能。 ©2006 IEEE。

著录项

  • 作者

    Knowles Joshua;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号