首页> 外文OA文献 >Computational design of functionally graded hip implants by means of additively manufactured porous materials
【2h】

Computational design of functionally graded hip implants by means of additively manufactured porous materials

机译:功能梯度髋关节植入物的计算设计通过附加制造的多孔材料

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Two of the main mechanically related problems of hip implants are the bone resorption due to the reduction of the stresses in the bone caused by the presence of the implant (stress shielding), and the interfacial failure caused by inadequate stress distribution at the bone-implant interface. While stiff implants increase stress shielding, flexible implants cause higher contact interfacial stresses. A compromise is thus needed, and two design stratégies have been suggested: 1) optimize the hip implant shape, or 2) optimize the functional gradation of mechanical properties of the implant. Additive manufacturing (AM) allows for the fabrication of implant shapes with almost no restrictions, and the production of porous materials whose mechanical properties are dependent on their geometrical parameters, which can be controlled. Therefore, AM allows for the production of implants having optimized shape and optimized functional gradation of mechanical properties. In addition, AM allows for quick design modifications and the possibility of patient-specific implants.ududThis thesis aims at taking advantage of the capabilities offered by AM for the design of the shape and functional gradation of the mechanical properties of hip stems in order to improve the mechanical compatibility with the bone (i.e. reduce the stress shielding and generate adequate interfacial stresses). To this end, finite element (FE) models are used to predict the mechanical behavior of the porous materials when designing hip stems. In a first step, the cost-effectiveness of the FE modeling approach for porous materials (e.g. beam or solid finite elements and sample size choice) was evaluated. In a second step, the irregularities that arise during the manufacturing process (e.g. strut inclination, strut diameter variation and strut elimination) were included in the FE model in order to enhance the correlation with experimental data. In the third part of this work, the shape and distribution of mechanical properties of a hip stem were optimized in order to reduce the bone loss and generate adequate interfacial stresses. The FE model of the porous material developed in the previous steps was then used to obtain the optimized distribution of mechanical properties of the stem.ududThe present work provides a methodology for obtaining accurate predictions of the mechanical behavior of AM porous materials. Furthermore, it provides a framework to conceive optimized hip implants having enhanced mechanical compatibility with the bone and produced with AM. To this end, optimized shape is combined with porous materials to achieve a functional gradation of the mechanical properties of the implants.
机译:髋关节植入物的两个主要与机械相关的问题是由于存在植入物(应力屏蔽)导致骨骼应力降低而导致的骨吸收,以及由于骨骼植入物的应力分布不足而导致的界面破坏接口。刚性植入物可增加应力屏蔽,而柔性植入物会引起更高的接触界面应力。因此,需要一个折衷方案,并且提出了两种设计策略:1)优化髋关节植入物的形状,或2)优化植入物机械性能的功能等级。增材制造(AM)允许几乎无限制地制造植入物形状,并生产机械性能取决于其几何参数(可控制)的多孔材料。因此,AM允许生产具有最佳形状和机械性能的功能梯度的植入物。此外,AM可以快速进行设计修改,并可以针对患者植入特定的植入物。 ud ud本论文旨在利用AM提供的功能来设计髋关节的股骨柄形状和机械性能的功能等级。为了改善与骨骼的机械相容性(即减少应力屏蔽并产生足够的界面应力)。为此,在设计髋关节时,使用有限元(FE)模型来预测多孔材料的机械性能。第一步,评估了有限元建模方法对多孔材料(例如梁或固体有限元和样本大小选择)的成本效益。第二步,在制造过程中出现的不规则性(例如,支撑杆倾斜度,支撑杆直径变化和支撑杆消除)被包含在有限元模型中,以增强与实验数据的相关性。在这项工作的第三部分中,对髋骨柄的机械特性的形状和分布进行了优化,以减少骨骼损失并产生足够的界面应力。然后,使用先前步骤中开发的多孔材料的有限元模型来获得杆的机械性能的优化分布。 ud ud本工作提供了一种方法,可用于获得对AM多孔材料的机械性能的准确预测。此外,它提供了构想构想出优化的髋关节植入物的框架,该植入物具有增强的与骨骼的机械相容性并由AM生产。为此,将优化的形状与多孔材料结合在一起,以实现植入物机械性能的功能分级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号