首页> 外文OA文献 >Discriminative and generative approaches for long- and short-term speaker characteristics modeling : application to speaker verification
【2h】

Discriminative and generative approaches for long- and short-term speaker characteristics modeling : application to speaker verification

机译:用于长期建模的判别和生成方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The speaker verification problem can be stated as follows: given two speech recordings, determine whether or not they have been uttered by the same speaker. Most current speaker verification systems are based on Gaussian mixture models. This probabilistic representation allows to adequately model the complex distribution of the underlying speech feature parameters. It however represents an inadequate basis for discriminating between speakers, which is the key issue in the area of speaker verification. In the first part of this thesis, we attempt to overcome these difficulties by proposing to combine support vector machines, a well established discriminative modeling, with two generative approaches based on Gaussian mixture models. In the first generative approach, a target speaker is represented by a Gaussian mixture model corresponding to a Maximum A Posteriori adaptation of a large Gaussian mixture model, coined universal background model, to the target speaker data. The second generative approach is the Joint Factor Analysis that has become the state-of-the-art in the field of speaker verification during the last three years. The advantage of this technique is that it provides a framework of powerful tools for modeling the inter-speaker and channel variabilities. We propose and test several kernel functions that are integrated in the design of both previous combinations. The best results are obtained when the support vector machines are applied within a new space called the "total variability space", defined using the factor analysis. In this novel modeling approach, the channel effect is treated through a combination of linear discnminant analysis and kemel normalization based on the inverse of the within covariance matrix of the speaker.ududIn the second part of this thesis, we present a new approach to modeling the speaker's longterm prosodic and spectral characteristics. This novel approach is based on continuous approximations of the prosodic and cepstral contours contained in a pseudo-syllabic segment of speech. Each of these contours is fitted to a Legendre polynomial, whose coefficients are modeled by a Gaussian mixture model. The joint factor analysis is used to treat the speaker and channel variabilities. Finally, we perform a scores fusion between systems based on long-term speaker characteristics with those described above that use short-term speaker features.
机译:说话者验证问题可以描述如下:给定两个语音记录,确定它们是否由同一说话者发出。当前大多数说话人验证系统都是基于高斯混合模型。这种概率表示允许对基础语音特征参数的复杂分布进行充分建模。然而,这代表了不充分的区分说话者的基础,这是说话者验证领域的关键问题。在本文的第一部分,我们试图通过建议将支持向量机(一种完善的判别模型)与基于高斯混合模型的两种生成方法相结合来克服这些困难。在第一种生成方法中,目标说话者由高斯混合模型表示,该模型对应于大型高斯混合模型的最大后验适应,即造币通用背景模型对目标说话者数据的适应。第二种生成方法是联合因子分析,在过去三年中,联合因子分析已成为说话人验证领域的最新技术。该技术的优势在于,它提供了一个强大的工具框架,可以对扬声器之间和通道之间的变化进行建模。我们提出并测试了集成在上述两种组合中的几个内核功能。当将支持向量机应用到一个新的空间(称为“总可变性空间”)中时,可获得最佳结果,该空间使用因子分析进行定义。在这种新颖的建模方法中,基于说话人内协方差矩阵的逆,通过线性判别分析和kemel归一化相结合来处理通道效应。 ud ud在本文的第二部分,我们提出了一种新方法对说话者的长期韵律和频谱特征进行建模。这种新颖的方法是基于伪音节段中包含的韵律和倒谱轮廓的连续近似。这些轮廓中的每一个都适合于勒让德多项式,其系数由高斯混合模型建模。联合因子分析用于处理说话者和通道的变异性。最后,我们在基于长期说话者特征的系统与上述使用短期说话者特征的系统之间进行分数融合。

著录项

  • 作者

    Dehak Najim;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号