首页> 外文OA文献 >Design and simulation of a fuel cell hybrid emergency power system for a more electric aircraft : evaluation of energy management schemes
【2h】

Design and simulation of a fuel cell hybrid emergency power system for a more electric aircraft : evaluation of energy management schemes

机译:燃料电池的设计和模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As the aircraft industries are moving toward more electric aircraft (MEA), the electrical peak load seen by the main and emergency generators becomes higher than in conventional aircraft. Consequently, there is a major concern regarding the aircraft emergency system, which consists of a ram air turbine (RAT) or air driven generator (ADG), to fulfill the load demand during critical situations; particularly at low aircraft speed where the output power is very low. A potential solution under study by most aircraft manufacturers is to replace the air turbine by a fuel cell hybrid system, consisting of fuel cell combined with other high power density sources such as supercapacitors or lithium-ion batteries.ududTo ensure the fuel cell hybrid system will be able to meet the load demand, it must be properly designed and an effective energy management strategy must be tested with real situations load profile. This work aims at designing a fuel cell emergency power system of a more electric aircraft and comparing different energy management schemes (EMS); with the goal to ensure the load demand is fully satisfied within the constraints of each energy source. The fuel cell hybrid system considered in this study consists of fuel cell, lithium-ion batteries and supercapacitors, along with associated DC-DC and DC-AC converters. The energy management schemes addressed are state-of-the-art, most commonly used energy management techniques in fuel cell vehicle applications and include: the state machine control strategy, the rule based fuzzy logic strategy, the classical PI control strategy, the frequency decoupling/fuzzy logic control strategy and the equivalent consumption minimization strategy (ECMS). Moreover, a new optimal scheme based on maximizing the instantaneous energy of batteries/supercapacitors, to improve the fuel economy is proposed. An off-line optimization based scheme is also developed to ascertain the validity of the proposed strategy in terms of fuel consumption. ududThe energy management schemes are compared based on the following criteria: the hydrogen consumption, the state of charges of the batteries and supercapacitors and the overall system efficiency. Moreover the stress on each energy source, which impacts their life cycle, are measured using a new approach based on the wavelet transform of their instantaneous power. A simulation model and an experimental test bench are developed to validate all analysis and performances.ududThe main results obtained are as follows: the state machine control scheme provided a slightly better efficiency and stresses on the batteries and supercapacitors. The classical PI control and the proposed scheme had the lowest fuel consumption and more use of the battery energy. As expected, the lowest fuel cell stress and lowest use of the battery energy was achieved with the frequency decoupling and fuzzy logic scheme, but at the expense of more fuel consumption and lower overall efficiency. The DC bus or supercapacitor voltage was maintained nearly constant for all the schemes. Also, the proposed strategy performed slightly better than the ECMS in terms of efficiency and fuel consumption, with an increase in fuel economy by 3 %.ududThe energy management scheme suitable for a MEA emergency system should be a multischeme EMS such that each scheme is chosen based on a specific criterion to prioritize. As an example, depending on the operating life of each energy source, the energy management strategy can be chosen to either minimise the stress on the fuel cell system, the battery system or supercapacitor system, hence maximizing the life cycle of the hybrid power system. Also if the target is to reduce the fuel consumption, the proposed or the classical PI strategies are better alternatives.
机译:随着飞机工业向更多的电动飞机(MEA)迈进,主发电机和应急发电机看到的电气峰值负载变得比传统飞机更高。因此,对于由应急空气涡轮机(RAT)或气动发电机(ADG)组成的飞机应急系统,以满足紧急情况下的负载需求是一个重大关注。特别是在输出功率非常低的低速飞机上。大多数飞机制造商正在研究的潜在解决方案是用燃料电池混合动力系统代替空气涡轮机,该系统由燃料电池与其他高功率密度源(例如超级电容器或锂离子电池)结合而成。 ud ud确保燃料电池混合动力系统将能够满足负载需求,必须进行适当的设计,并且必须根据实际情况的负载曲线测试有效的能源管理策略。这项工作旨在设计更多电动飞机的燃料电池应急电源系统,并比较不同的能源管理方案(EMS);目的是确保在每个能源的限制内完全满足负载需求。本研究中考虑的燃料电池混合系统由燃料电池,锂离子电池和超级电容器以及相关的DC-DC和DC-AC转换器组成。所解决的能量管理方案是燃料电池汽车应用中最先进的,最常用的能量管理技术,包括:状态机控制策略,基于规则的模糊逻辑策略,经典PI控制策略,频率解耦/模糊逻辑控制策略和等效消耗最小化策略(ECMS)。此外,提出了一种基于最大化电池/超级电容器瞬时能量的新的最优方案,以提高燃油经济性。还开发了一种基于离线优化的方案,以根据燃料消耗量确定所提出策略的有效性。 ud ud根据以下标准比较能量管理方案:氢气消耗,电池和超级电容器的充电状态以及整个系统效率。此外,使用一种基于能量瞬时功率的小波变换的新方法来测量影响每个能量生命周期的应力。开发了一个仿真模型和一个实验测试台来验证所有分析和性能。 ud ud获得的主要结果如下:状态机控制方案提供了更好的效率,并给电池和超级电容器带来了压力。经典的PI控制和建议的方案具有最低的燃油消耗和更多的电池能量利用。不出所料,通过频率解耦和模糊逻辑方案实现了最低的燃料电池压力和最低的电池能量使用,但是却以更多的燃料消耗和更低的整体效率为代价。在所有方案中,DC总线或超级电容器电压均保持几乎恒定。此外,在效率和燃料消耗方面,拟议的策略在性能和燃油消耗方面均比ECMS稍好一些,燃油经济性提高了3%。 ud ud适用于MEA应急系统的能源管理方案应为多方案EMS,以便每个基于特定标准选择方案以进行优先级排序。例如,根据每个能源的使用寿命,可以选择能源管理策略以最小化燃料电池系统,电池系统或超级电容器系统上的压力,从而最大化混合动力系统的生命周期。同样,如果目标是减少燃油消耗,则建议的或经典的PI策略是更好的选择。

著录项

  • 作者

    Njoya Motapon Souleman;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号