首页> 外文OA文献 >Indexing Density Models for Incremental Learning and Anytime Classification on Data Streams
【2h】

Indexing Density Models for Incremental Learning and Anytime Classification on Data Streams

机译:用于增量学习的索引密度模型和数据流上的任意时间分类

摘要

Classification of streaming data faces three basic challenges: it has to deal with huge amounts of data, the varying time between two stream data items must be used best possible (anytime classification) and additional training data must be incrementally learned (anytime learning) for applying the classifier consistently to fast data streams. In this work, we propose a novel index-based technique that can handle all three of the above challenges using the established Bayes classifier on effective kernel density estimators. Our novel Bayes tree automatically generates (adapted efficiently to the individual object to be classified) a hierarchy of mixture densities that represent kernel density estimators at successively coarser levels. Our probability density queries together with novel classification improvement strategies provide the necessary information for very effective classification at any point of interruption. Moreover, we propose a novel evaluation method for anytime classification using Poisson streams and demonstrate the anytime learning performance of the Bayes tree.
机译:流数据的分类面临三个基本挑战:必须处理大量数据,必须尽最大可能使用两个流数据项之间的时间变化(随时分类),必须逐步学习(随时学习)附加训练数据才能应用分类器始终如一地处理快速数据流。在这项工作中,我们提出了一种新颖的基于索引的技术,该技术可以使用在有效内核密度估计器上建立的贝叶斯分类器来应对上述所有三个挑战。我们新颖的贝叶斯树自动生成(有效地适应要分类的单个对象)混合密度的层次结构,该层次结构代表了连续更粗糙级别的内核密度估计量。我们的概率密度查询与新颖的分类改进策略一起为在任何中断点进行非常有效的分类提供了必要的信息。此外,我们提出了一种使用泊松流进行随时分类的新颖评估方法,并证明了贝叶斯树的随时学习性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号