首页> 外文OA文献 >Design of Parameter Independent, High Performance Sensorless Controllers for Permanent Magnet Synchronous Machines
【2h】

Design of Parameter Independent, High Performance Sensorless Controllers for Permanent Magnet Synchronous Machines

机译:永磁同步电机参数无关,高性能无传感器控制器的设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Permanent Magnet Synchronous Machine (PMSM) has become an attractive candidate for various industrial applications due to its high efficiency and torque density. In the PMSM drive system, simple and robust control methods play an important role in achieving satisfactory drive performances. For reducing the cost and increasing the reliability of the drive system, eliminating the mechanical sensor brings a lot advantages to the PMSM drive system. Therefore, sensorless control was developed and has been increasingly used in different PMSM drive systems in the last 20 years. However, machine parameters such as resistance and inductance are involved in many existing sensorless control algorithms. Therefore, varying machine parameters due to different operation conditions may affect the accuracy of the position estimation and the drive performance consequently. For power converter manufactures, a generalized, universal sensorless controller that can be used for different types of PMSMs is desired. It is highly preferred that there should be no machine parameters involved in the sensorless controller.The understanding of the PM machine model is a foremost requirement for the machine control. In this thesis, the mathematical models of the Permanent Magnet (PM) machine are first introduced. The control fundamentals including Field Oriented Control (FOC) strategy and two other basic sensorless control methods are presented as well.The experiment platform setup used to validate the proposed sensorless control algorithms is described next. Since the inverter voltage error may affect the performance of the sensorless control system, the nonlinear inverter voltage error is analyzed and discussed in detail. Two compensation methods are implemented and the results are given.As a comparison example, one of the typical sensorless algorithm – the INFORM method is implemented and tested. It is demonstrated that the voltage error may seriously affect the performance of the position estimator. To overcome this difficulty, a new implementation scheme of the INFORM method with easy inverter voltage error compensation strategy is therefore proposed.In this thesis, two new machine parameter independent sensorless control methods are proposed. The zero voltage injection method is first introduced for e.g. medium speed operation. In this method, the zero voltage vector is injected between two FOC (Pulse-Width Modulation) PWM periods. In the injection period, the voltage output from the inverter is forced to be zero. The rotor position and the speed are then estimated simply from the current changes during this zero voltage injection period. This method provides a good performance for the rotor position estimation. The transient fluctuation of the estimated rotor position error is around 20 degrees with a step load torque change from 0% to 100% of the rated torque. The position error in steady state is within ±2 electrical degrees for the best case. The proposed method may also be used for e.g. online machine parameter identification and an application example is given. For low speed operation, a new minimum voltage injection sensorless algorithm is introduced. A voltage vector with constant magnitude is inserted between two FOC PWM periods. The currents sampled before and after the injection period are then used for estimating the rotor position and speed. This method is further developed to suppress the inverter voltage error effects on the position estimation accuracy. Experimental results have shown that the transient position error during a step load change from no-load to full-load is around 20 degrees. The ripple in the rotor position error in steady state is around ±3 degrees with the real rotor speed as the feedback and ±6 degrees with the estimated rotor speed as the feedback. These two proposed methods ideally need one injection voltage vector only for position estimation. This will benefit increasing the control bandwidth and minimizing the current distortion. The implementations and extensive experimental results of these two methods are presented in detail in the thesis.
机译:永磁同步电机(PMSM)由于其高效率和高扭矩密度而已成为各种工业应用的有吸引力的候选者。在PMSM驱动系统中,简单而强大的控制方法在获得令人满意的驱动性能方面起着重要作用。为了降低成本并提高驱动系统的可靠性,取消机械传感器为PMSM驱动系统带来了很多优势。因此,近20年来,无传感器控制得到了发展,并已越来越多地用于不同的PMSM驱动系统中。但是,许多现有的无传感器控制算法中都涉及电阻和电感等机器参数。因此,由于不同的操作条件而导致的变化的机器参数可能会影响位置估计的准确性以及驱动性能。对于功率转换器制造商,需要一种可用于不同类型PMSM的通用通用无传感器控制器。高度优选无传感器控制器中不涉及任何机器参数。对PM机器模型的理解是机器控制的首要要求。本文首先介绍了永磁电机的数学模型。还介绍了包括磁场定向控制(FOC)策略和其他两种基本的无传感器控制方法在内的控制基础。接下来介绍用于验证所提出的无传感器控制算法的实验平台设置。由于逆变器电压误差可能会影响无传感器控制系统的性能,因此将对非线性逆变器电压误差进行详细分析和讨论。实施了两种补偿方法并给出了结果。作为比较示例,一种典型的无传感器算法– INFORM方法已实现并经过测试。结果表明,电压误差可能会严重影响位置估计器的性能。为了克服这一困难,提出了一种具有简单逆变器电压误差补偿策略的INFORM方法新的实现方案。本文提出了两种新的与电机参数无关的无传感器控制方法。首先引入零电压注入方法,例如中速运行。在这种方法中,将零电压矢量注入到两个FOC(脉冲宽度调制)PWM周期之间。在注入期间,从逆变器输出的电压被强制为零。然后简单地从零电压注入期间的电流变化估算转子位置和速度。该方法为转子位置估计提供了良好的性能。估计转子位置误差的瞬态波动约为20度,阶跃负载转矩从额定转矩的0%变为100%。最佳情况下,稳态下的位置误差在±2电度以内。所提出的方法也可以用于例如。给出了在线机器参数辨识的应用实例。对于低速运行,引入了新的最小电压注入无传感器算法。在两个FOC PWM周期之间插入一个幅值恒定的电压矢量。然后,在注入周期之前和之后采样的电流用于估计转子位置和速度。进一步开发该方法以抑制逆变器电压误差对位置估计精度的影响。实验结果表明,从空载到满载的阶跃负载变化期间的瞬态位置误差约为20度。稳定状态下转子位置误差的波动以实际转子速度为反馈约为±3度,以估算转子速度为反馈约为±6度。理想地,这两种提出的方​​法仅需要一个注入电压矢量来进行位置估计。这将有利于增加控制带宽并最小化电流失真。本文详细介绍了这两种方法的实现和广泛的实验结果。

著录项

  • 作者

    Xie Ge;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号