首页> 外文OA文献 >Application of Time Series Models (ARIMA, GARCH, and ARMA-GARCH) for Stock Market Forecasting
【2h】

Application of Time Series Models (ARIMA, GARCH, and ARMA-GARCH) for Stock Market Forecasting

机译:时间序列模型(aRIma,GaRCH和aRma-GaRCH)在股市预测中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper examines efficacy and limitations of time series models, namely ARIMA, GARCH, and ARMA-GARCH for stock market returns forecasting. First, the paper assesses the unique features of financial data, particularly volatility clustering and fat-tails of the return distribution, and addresses the limitations of using autoregressive integrated moving average (ARIMA) models in financial economics. Secondly, it examines the application of ARMA-GARCH models for forecasting of both conditional means as well as the conditional variance of the returns. Finally, using the standard model selection criteria such as AIC, BIC, SIC, and HQIC the forecasting performance of various candidate ARMA-GARCH models was examined. Using excess returns of MSCI World Index and excess returns from Fama-French 3-factor-model, it was found that an ARMA (1,0) + GARCH (1,1) consistently yields best results in-sample for the same period across both datasets, while showing some forecasting limitations out-of-sample.
机译:本文研究了时间序列模型(ARIMA,GARCH和ARMA-GARCH)在股市收益预测中的功效和局限性。首先,本文评估了金融数据的独特特征,尤其是波动性聚类和收益分布的尾巴,并解决了在金融经济学中使用自回归综合移动平均线(ARIMA)模型的局限性。其次,它考察了ARMA-GARCH模型在预测条件均值以及收益的条件方差中的应用。最后,使用标准模型选择标准(例如AIC,BIC,SIC和HQIC)检查了各种候选ARMA-GARCH模型的预测性能。使用MSCI世界指数的超额收益和Fama-French 3因子模型的超额收益,发现ARMA(1,0)+ GARCH(1,1)始终在同一时期的样本中始终产生最佳结果这两个数据集,同时显示了一些样本外的预测限制。

著录项

  • 作者

    Grachev Oleg Y. 1995--;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号