首页> 外文OA文献 >Real-time detection of traffic anomalies in wireless mesh networks
【2h】

Real-time detection of traffic anomalies in wireless mesh networks

机译:实时检测无线网状网络中的流量异常

摘要

Anomaly detection is emerging as a necessary component as wireless networks gain popularity. Anomaly detection has been addressed broadly in wired networks and powerful methods have been developed for correct detection of a variety of known attacks and other anomalies. In this paper, we propose a real-time anomaly detection and identification scheme for wireless mesh networks (WMN) using components from previous methods developed for wired networks. Experiments over a WMN testbed show the effectiveness of the proposed scheme in isolating different types of anomalies, such as Denial-of-service attacks, port scan attacks, etc. Our scheme uses Chi-square statistics and it is based on similar ideas as the scheme presented by Lakhina et al. although it has lower computational complexity. The original method by Lakhina et al. was developed for wired networks and used Principal Component Analysis (PCA) for reducing the dimensions of observed data and Hotelling’s t 2 statistics to distinguish between normal and abnormal traffic conditions. However, in our studies we found that dimension reduction is the most computationally intensive process of the scheme. In this paper we propose an alternative way of reducing dimensions using flow variances in a Chi-square test. Experimental results show that the Chi-square test performs similarly well to the PCA-based method at merely a fraction of the computations. Moreover, we propose an automatic identification scheme to pin-point the cause of the detected anomaly and its contribution in terms of additional or lack of traffic. Our results and comparison with other statistical tools show that the Chi-square test and the PCA-based method with identification scheme make powerful tools for real-time detection of various anomalies in an interference prone wireless networking environment.
机译:随着无线网络的普及,异常检测已成为必不可少的组件。在有线网络中,异常检测已得到广泛解决,并且已经开发出了用于正确检测各种已知攻击和其他异常的强大方法。在本文中,我们提出了一种无线网状网络(WMN)的实时异常检测和识别方案,该方案使用以前为有线网络开发的方法中的组件。在WMN测试平台上进行的实验表明,该方案在隔离不同类型的异常(例如拒绝服务攻击,端口扫描攻击等)中是有效的。我们的方案使用卡方统计,其基于与Lakhina等提出的方案。尽管它具有较低的计算复杂度。 Lakhina等人的原始方法。是为有线网络开发的,并使用主成分分析(PCA)来减小观测数据的尺寸,并使用Hotelling的t 2统计数据来区分正常流量和异常流量。但是,在我们的研究中,我们发现降维是该方案计算量最大的过程。在本文中,我们提出了在卡方检验中使用流量方差来减小尺寸的另一种方法。实验结果表明,卡方检验的执行效果与基于PCA的方法相似,仅占计算的一小部分。此外,我们提出了一种自动识别方案,以根据流量的增加或不足来查明检测到的异常的原因及其贡献。我们的结果以及与其他统计工具的比较表明,卡方检验和基于PCA的带有识别方案的方法为在易受干扰的无线网络环境中实时检测各种异常提供了强大的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号