首页> 外文OA文献 >Wideband Direction of Arrival estimation and sparse modeling for underwater surveillance
【2h】

Wideband Direction of Arrival estimation and sparse modeling for underwater surveillance

机译:宽带波达方向估计和水下监视稀疏建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In underwater surveillance sources, such as ships or submarines, are localized using the acoustic noise emitted by the source engines, propellers and other machinery. The acoustic signals propagate in the sea and are recorded with an array of acoustic sensors. Processing the recorded signals to obtain the locations of the sources is known as Direction of Arrival (DOA) estimation in the field of signal processing.A simple mathematical model relating the sensor array geometry to the DOA of the source exists when the frequency of the source signal is known. The model is directly applicable to a narrowband DOA estimation problem where the energy of the source signals is concentrated around a single carrier frequency. For underwater surveillance, however, the source signals are wideband which complicates the problem.This thesis reviews existing methods for wideband DOA estimation: Simple extensions of well known narrowband methods MVDR and MUSIC, the so called coherent methods and the most recent methods belonging into the sparse framework. An original idea for extending MVDR using a likelihood based combining of subbands, MVDR-LBC is developed.The thesis models the sensor signals as a sparse autoregressive process by linear prediction and the original algorithm GRLS. The sparse model is shown to be effective compared to the conventional non-sparse one. The model can be used to compress the data recorded in underwater surveillance.The wideband DOA estimation methods are tested with a number of simulations and with real data recorded in the sea. MVDR is shown to be robust and effective, the accuracy and resolution of which can be improved using MVDR-LBC. MUSIC provides good resolution, is computationally efficient and can be implemented quite simply. The coherent methods are the most complicated and need good pre-estimations for the source directions but can resolve close sources best.
机译:在水下监视源中,例如船舶或潜艇,是使用源引擎,螺旋桨和其他机械装置发出的声波定位的。声音信号在海中传播,并通过一系列声音传感器进行记录。处理记录的信号以获得信号源的位置在信号处理领域称为到达方向(DOA)估计。当信号源的频率出现时,存在一个简单的数学模型,将传感器阵列的几何形状与信号源的DOA相关联信号是已知的。该模型直接适用于窄带DOA估计问题,其中源信号的能量集中在单个载波频率附近。然而,对于水下监视来说,源信号是宽带的,这使问题变得复杂。本文回顾了宽带DOA估计的现有方法:众所周知的窄带方法MVDR和MUSIC的简单扩展,所谓的相干方法以及属于该方法的最新方法。稀疏的框架。提出了基于似然结合子带扩展MVDR的初衷,即MVDR-LBC。本文通过线性预测和原始算法GRLS,将传感器信号建模为稀疏的自回归过程。与传统的非稀疏模型相比,稀疏模型被证明是有效的。该模型可用于压缩水下监视中记录的数据。宽带DOA估计方法已通过大量模拟和海上实际记录的数据进行了测试。 MVDR被证明是可靠且有效的,使用MVDR-LBC可以提高其准确性和分辨率。 MUSIC提供良好的分辨率,计算效率高,并且可以非常简单地实现。相干方法是最复杂的方法,需要对源方向进行良好的预先估计,但可以最好地解析接近源。

著录项

  • 作者

    Helin Petri;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号