首页> 外文OA文献 >Accelerating Image Processing Pipeline on Mobile Devices Using GPU
【2h】

Accelerating Image Processing Pipeline on Mobile Devices Using GPU

机译:利用GpU加速移动设备上的图像处理流水线

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Majority of current mobile devices include a camera. To meet the form-factor and price requirements, the camera is typically built from inexpensive components which causes defects such as noise, dead pixels and distortions. An acceptable image quality is achieved by processing algorithms which together form an image processing pipeline. Hardware implementations typically offer the best performance and the lowest power consumption, but software implementations can be used to cut costs and maximize the flexibility of the system. However, software implementations may be too ineffective and cause overheating. One alternative to pure hardware and software implementations is the GPU.In this thesis, a generic framework for GPU-based image processing is implemented. The framework simplifies algorithm implementation and organization significantly, and hides some hardware limitations that current mobile GPUs have. The framework is evaluated by implementing an image processing pipeline which consists of seven typical algorithms, and by comparing its performance, memory consumption, power consumption and heat generation to an equivalent CPU implementation. This thesis also discusses optimizations that can be done for the GPU implementation especially on mobile devices.The experiments show that the GPU implementation is able to process images over 40% faster than a multi-threaded CPU implementation. Biggest performance gains were seen in algorithms that were computationally heavy. The GPU is also able to process the same image with much less power consumption. On the other hand, the GPU proved to produce more heat in the test device. With the tested pipeline, also memory consumption was higher than with an optimized CPU implementation.
机译:当前的大多数移动设备包括相机。为了满足尺寸和价格要求,该相机通常由廉价的组件制成,这些组件会导致诸如噪声,像素坏点和变形的缺陷。可以通过共同形成图像处理管线的处理算法来获得可接受的图像质量。硬件实现通常可提供最佳性能和最低功耗,但软件实现可用于削减成本并最大化系统的灵活性。但是,软件实现可能效果太差,并导致过热。 GPU是纯硬件和软件实现的一种替代方法。本文研究了一种基于GPU的图像处理的通用框架。该框架极大地简化了算法的实现和组织,并隐藏了当前移动GPU所具有的一些硬件限制。通过实现由七个典型算法组成的图像处理管道,并将其性能,内存消耗,功耗和热量生成与等效的CPU实现进行比较,来评估该框架。本文还讨论了可以针对GPU实现(尤其是在移动设备上)进行的优化。实验表明,GPU实现比多线程CPU实现的图像处理速度快40%以上。在计算量很大的算法中,可以看到最大的性能提升。 GPU还能够以更少的功耗处理同一图像。另一方面,GPU被证明会在测试设备中产生更多的热量。在经过测试的管道中,内存消耗也比优化的CPU实现要高。

著录项

  • 作者

    Hakanen Jesse;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号