首页> 外文OA文献 >Frequency Domain Autocorrelation Based Compressed Spectrum Sensing for Cognitive Radio
【2h】

Frequency Domain Autocorrelation Based Compressed Spectrum Sensing for Cognitive Radio

机译:基于频域自相关的压缩算法 认知无线电的频谱感知

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As wireless applications are growing rapidly in the modern world, this results in the shortage of radio spectrum due to the fixed allocation of spectrum by governmental agencies for different wireless technologies. This problem raises interest to utilize spectrum in a more efficient way, in order to provide spectrum access to other users when they need it. In wireless communications systems, cognitive radio (CR) is getting much attention due to its capability to combat with this scarcity problem. A CR senses the available spectrum band to check the activity of primary users (PU). It utilizes the unused spectral resources by providing access to secondary users (SU). Spectrum sensing (SS) is one of the most critical issues in cognitive radio, and there are various SS methods for the detection of PU signals. An energy detector (ED) based SS is the most common sensing method due to its simple implementation and low computational complexity. This method works well in ideal scenarios but its detection performance for PU signal degrades drastically under low SNR values in the presence of noise uncertainty. Eigenvalue-based SS method performs well with such real-life issues, but it has very high computational complexity. This raises a demand for such a detector which has less computational complexity and can perform well in practical wireless multipath channels as well as under noise uncertainty.This study focuses on a novel variant of autocorrelation detector operating in the frequency domain (FD-AC). The method is applicable to PUs using the OFDM waveform with the cyclic prefix (CP). The FD-AC method utilizes fast Fourier transform (FFT) and detects an active PU through the CP-induced correlation peak estimated from the FFT-domain samples. It detects the spectral holes in the available electromagnetic spectrum resources in an efficient way, in order to provide opportunistic access to SUs. The proposed method is also insensitive to the practical wireless channel effects. Hence, it works well in frequency selective channels. It also has the capability to mitigate the effects of noise uncertainty and therefore, it is robust to noise uncertainty. FD-AC facilitates partial band sensing which can be considered as a compressed spectrum sensing method. This allows sensing weak PU signals which are partly overlapped by other strong PU or CR transmissions. On the other hand, it helps in the reduction of computational complexity while sensing PU signal in the available spectrum band, depending on the targeted sensitivity. Moreover, it has highly increased flexibility and it is capable of facilitating robust wideband multi-mode sensing with low complexity. Its performance for the detection of PU signal does not depend on the known time lag, therefore, it can perform well in such conditions where the detailed OFDM signal characteristics are not known.
机译:随着现代世界中无线应用的快速增长,由于政府机构为不同的无线技术固定分配了频谱,这导致了无线电频谱的短缺。这个问题引起了人们对以更有效​​的方式利用频谱的兴趣,以便在其他用户需要时向他们提供频谱访问。在无线通信系统中,认知无线电(CR)由于能够解决这种稀缺性问题而备受关注。 CR感知可用频谱以检查主要用户(PU)的活动。它通过提供对次要用户(SU)的访问来利用未使用的频谱资源。频谱感测(SS)是认知无线电中最关键的问题之一,并且有多种SS方法可以检测PU信号。基于能量检测器(ED)的SS由于其实现简单且计算复杂度低而成为最常见的传感方法。该方法在理想情况下效果很好,但是在存在噪声不确定性的情况下,在低SNR值下,其对PU信号的检测性能会急剧下降。基于特征值的SS方法在此类现实问题中表现良好,但计算复杂度很高。这就提出了对这样一种检测器的需求,该检测器具有较低的计算复杂度并且可以在实际的无线多径信道中以及在噪声不确定的情况下表现良好。该方法适用于使用具有循环前缀(CP)的OFDM波形的PU。 FD-AC方法利用快速傅立叶变换(FFT),并通过从FFT域样本估计的CP引起的相关峰来检测活动PU。它以有效的方式检测可用电磁频谱资源中的频谱孔,以提供对SU的机会访问。所提出的方法对实际的无线信道效应也不敏感。因此,它在频率选择频道中效果很好。它还具有减轻噪声不确定性影响的能力,因此对噪声不确定性具有鲁棒性。 FD-AC有助于部分频带检测,可以将其视为压缩频谱检测方法。这允许感测弱的PU信号,这些信号被其他强的PU或CR传输部分重叠。另一方面,根据目标灵敏度,它有助于在检测可用频谱带中的PU信号时降低计算复杂性。而且,它具有高度增加的灵活性,并且能够以低复杂度促进鲁棒的宽带多模式感测。它用于检测PU信号的性能不依赖于已知的时间滞后,因此,在未知的详细OFDM信号特性未知的情况下,它可以很好地执行。

著录项

  • 作者

    Ilyas Zobia;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号