首页> 外文OA文献 >A dynamical systems approach to unsteady systems
【2h】

A dynamical systems approach to unsteady systems

机译:动态系统方法用于非稳态系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For steady systems, interpreting the flow structure is typically straightforward because streamlines and trajectories coincide. Therefore the velocity field, or quantities derived from it, provide a clear description of the flow geometry. For unsteady flows, this is often not the case. A more natural choice is to understand the flow in terms of particle trajectories, i.e., the Lagrangian viewpoint. While the chaotic behavior of trajectories of unsteady systems makes direct interpretation difficult, more structured and frame-independent techniques have been developed. The method presented here uses finite-time Lyapunov exponent (FTLE) fields to locate Lagrangian Coherent Structures (LCS). LCS are co-dimension 1 separatrices that partition regions in phase space with dynamically different behavior. This method enables the detection of often non-obvious, time-dependent boundaries in complicated flows, which greatly elucidates the transport and mixing geometry.The first portion of this thesis deals with the theoretical development of LCS for two-, and then, n-dimensional systems, where n>2. Based on the definitions presented, some important properties of these structures are proven. It is shown that the flux across an LCS is typically very small and depends on the relative strength of the structure, the difference between the local rotation rate of the LCS with that of the Eulerian velocity field, and the integration time used to compute the FTLE field.The second portion of the thesis presents a series of numerical studies in which LCS are used to examine a range of interesting applications. This portion is bridged with the theoretical development presented in the first half by a brief chapter describing the numerical computation of FTLE fields and LCS. Applications presented in the second half of the thesis include the study of vortex rings in which LCS are used to define the unsteady vortex boundary to clarify the entrainment and detrainment processes; the computation of LCS in the ocean to provide mesoscale separatrices that help characterize the flow conditions and help navigate gliders or drifters used for sampling; flow over an airfoil where an LCS captures the unsteady separation profile; flow through a micro-mixing channel where LCS reveal the mechanism and geometry of chaotic mixing.
机译:对于稳定的系统,解释流结构通常很简单,因为流线和轨迹是重合的。因此,速度场或从中得出的速度可以清楚地描述流场。对于不稳定的流量,通常不是这种情况。一个更自然的选择是根据粒子轨迹(即拉格朗日观点)理解流。尽管不稳定系统的轨迹的混沌行为使直接解释变得困难,但已经开发出了更加结构化和与帧无关的技术。此处介绍的方法使用有限时间Lyapunov指数(FTLE)字段来定位拉格朗日相干结构(LCS)。 LCS是维数1分离元,它以动态不同的行为划分相空间中的区域。这种方法能够检测复杂流中通常不是很明显的,与时间有关的边界,从而极大地阐明了运输和混合的几何形状。本论文的第一部分论述了LCS的理论发展,包括二,然后n维系统,其中n> 2。根据给出的定义,证明了这些结构的一些重要特性。结果表明,跨LCS的通量通常很小,并且取决于结构的相对强度,LCS的局部旋转速度与欧拉速度场的局部旋转速度之间的差异以及用于计算FTLE的积分时间论文的第二部分提出了一系列数值研究,其中使用LCS检验了一系列有趣的应用。这部分与上半部分通过介绍FTLE字段和LCS的数值计算的简短章节所提供的理论发展相联系。在论文的后半部分提出的应用包括涡旋环的研究,其中使用LCS定义不稳定的涡旋边界,以澄清夹带和减夹过程。海洋中LCS的计算,以提供中尺度的分离,有助于表征流动条件并帮助导航用于采样的滑翔机或浮标;流过机翼的地方,LCS捕获了不稳定的分离轮廓;流动通过微混合通道,其中LCS揭示了混沌混合的机理和几何形状。

著录项

  • 作者

    Shadden Shawn Christopher;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号