首页> 外文OA文献 >1. The spanwise perturbation of two-dimensional boundary layers. 2. The turbulent Rayleigh problem. 3. The propagation of free turbulence in a mean shear flow
【2h】

1. The spanwise perturbation of two-dimensional boundary layers. 2. The turbulent Rayleigh problem. 3. The propagation of free turbulence in a mean shear flow

机译:1.二维边界层的翼展扰动。 2.湍流的瑞利问题。 3.平均剪切流中自由湍流的传播

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

NOTE: Text or symbols not renderable in plain ASCII are indicated by [...]. Abstract is included in .pdf document.1. The Spanwise Perturbation of Two-Dimensional Boundary Layers.Large spanwise variations of boundary-layer thickness have recently been found in wind tunnels designed to maintain two-dimensional flow. Bradshaw argues that these variations are caused by minute deflections of the free-stream flow rather than an intrinsic boundary-layer instability. The effect of a small, periodic transverse flow on a flat-plate boundary layer is studied in this chapter. The transverse flow is found to produce spanwise thickness variations whose amplitude increases linearly with distance downstream.2. The Turbulent Rayleigh Problem.Rayleigh flow is the non-steady motion of fluid above a flat plate accelerated suddenly into motion. Laminar Rayleigh flow is closely analogous to laminar boundary-layer flow but does not involve the analytical difficulty of non-linear convection. In this chapter, turbulent Rayleigh flow is studied to illuminate physical ideas used recently in boundary-layer theory. Boundary layers have nearly similar profiles for certain rates of pressure change. The Rayleigh problem is shown to have a class of exactly similar solutions. Townsend's energy balance argument for the wall layer and Clauser's constant eddy viscosity assumption for the outer layer are adapted to the Rayleigh problem to fix the relation between shear and stress. The resulting non-linear, ordinary differential equation of motion is solved exactly for constant wall stress, analogous to zero pressure gradient in the boundary-layer problem, and for zero wall stress, analogous to continuously separating flow. Finally, the boundary-layer equations are expanded in powers of the skin friction parameter [...], and the zeroth order problem is shown to be identical to the Rayleigh problem. The turbulent Rayleigh problem is not merely an analogy, but is a rational approximation to the turbulent boundary-layer problem.3. The Propagation of Free Turbulence in a Mean Shear FlowThis chapter begins with the assumption that the propagation of turbulence through a rapidly shearing flow depends primarily on random stretching of mean vorticity. The Reynolds stress [...] acting on a mean flow [...] in the x direction is computed from the linearized equations of motion. Turbulence homogeneous in x, z and concentrated near y = 0 was expected to catalyze the growth of turbulence further out by stretching mean vorticity, but [...] is found to become steady as [...]. As far as Reynolds stress is a measure of turbulent intensity, random stretching of mean vorticity alone cannot yield steadily propagating turbulence.The problem is simplified by assuming that all flow properties are independent of x. Eddy motion in the y, z plane is then independent of the x momentum it transports, and the mean speed U(y,t) is diffused passively. The equations of motion are partially linearized by neglecting convection of eddies in the y, z plane, and wave equations for [...] and U(y,t) are derived. The solutions are worthless, however, for large times. Turbulence artificially steady in the y, z plane forces the mean speed gradient steadily to zero. In a real flow the eddies disperse as fast as U diffuses.Numerical experiments are designed to find how quickly concentrated vortex columns parallel to x disperse over the y, z plane and how effectively they diffuse U. It is shown that unless a lower limit on the distance between any two vortices is imposed, computational errors can dominate the solution no matter how small a time increment is used. Vortices which approach closely must be united. Uniting vortices during the computations is justified by finding a capture cross section for two vortices interacting in a strain field. The experiments confirm the result that columnar eddies disperse as fast as they transport momentum.
机译:注意:用[...]表示无法用纯ASCII呈现的文本或符号。摘要包含在.pdf文件中1。二维边界层的翼展方向扰动最近在设计用于维持二维流动的风洞中发现边界层厚度的翼展方向大变化。布拉德肖认为,这些变化是由自由流的微小偏转引起的,而不是固有的边界层不稳定性。本章研究了较小的周期性横向流动对平板边界层的影响。发现横向流产生沿厚度方向的厚度变化,其幅度随下游距离线性增加。2。湍流瑞利问题瑞利流是指平板上方的流体突然加速运动而产生的非稳态运动。层流瑞利流与层流边界层流非常相似,但不涉及非线性对流的分析难度。在本章中,研究湍流瑞利流以阐明边界层理论中最近使用的物理思想。对于某些压力变化率,边界层具有几乎相似的轮廓。瑞利问题显示出具有一类完全相似的解决方案。汤森(Townsend)对壁层的能量平衡论点和克劳斯特(Clauser)对外层的恒定涡流粘度假设适用于瑞利问题,以固定剪切力和应力之间的关系。对于恒定的壁应力(类似于边界层问题中的零压力梯度)和对于零壁应力(类似于连续分离的流动),可以精确地解决由此产生的非线性,常微分运动方程。最后,将边界层方程式扩展为皮肤摩擦参数的幂,并且证明零阶问题与瑞利问题相同。湍流瑞利问题不仅是类比,而且是湍流边界层问题的合理近似。3。自由湍流在平均剪切流中的传播本章从以下假设开始:湍流通过快速剪切流的传播主要取决于平均涡度的随机拉伸。从线性运动方程计算在x方向作用在平均流量上的雷诺应力。在x,z上均质并且集中在y = 0附近的湍流有望通过扩展平均涡度进一步促进湍流的增长,但是发现它稳定了。由于雷诺应力是湍流强度的量度,仅平均涡度的随机拉伸无法产生稳定增长的湍流。假设所有流动特性均与x​​无关,则简化了该问题。则在y,z平面中的涡流运动与其传输的x动量无关,并且平均速度U(y,t)被动扩散。 graco.com graco.com通过忽略y,z平面中涡流的对流,可将运动方程部分线性化,并推导出[...]和U(y,t)的波动方程。但是,这些解决方案长期以来毫无用处。在y,z平面中人为稳定地产生湍流,将平均速度梯度稳定地强制为零。在实际流动中,涡旋的扩散速度与U的扩散速度一样快。设计了数值实验,以发现平行于x的集中涡旋列在y,z平面上的扩散速度以及扩散方式如何有效。如果强加任何两个涡旋之间的距离,则无论使用多小的时间增量,计算误差都可以主导解决方案。接近的涡流必须统一。通过找到在应变场中相互作用的两个涡旋的捕获横截面,可以证明在计算过程中将涡旋统一。实验证实了柱状涡流的扩散速度与它们的传输动量一样快。

著录项

  • 作者

    Crow Steven Collins;

  • 作者单位
  • 年度 1966
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号