首页> 外文OA文献 >Iterative decoding and pseudo-codewords
【2h】

Iterative decoding and pseudo-codewords

机译:迭代解码和伪码字

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the last six years, we have witnessed an explosion of interest in the coding theory community, in iterative decoding and graphical models, due primarily to the invention of turbo codes. While the structural properties of turbo codes and low density parity check codes have now been put on a firm theoretical footing, what is still lacking is a satisfactory theoretical explanation as to why iterative decoding algorithms perform as well as they do. In this thesis we make a first step by discussing the behavior of various iterative decoders for the graphs of tail-biting codes and cycle codes. By increasing our understanding of the behavior of the iterative min-sum (MSA) and sum-product (SPA) algorithms on graphs with cycles, we can design codes which achieve better performance.Much of this thesis is devoted to the analysis of the performance of the MSA and SPA on the graphs for tail-biting codes and cycle codes. We give sufficient conditions for the MSA to converge to the maximum likelihood codeword after a finite number of iterations. We also use the familiar union bound argument to characterize the performance of the MSA after many iterations. For a cycle code, we show that the performance of the MSA decoder is asymptotically as good as maximum likelihood. For tail-biting codes this will depend on our choice of trellis.
机译:在过去的六年中,主要是由于Turbo码的发明,我们看到了编码理论界对迭代解码和图形模型的兴趣激增。尽管现在已经将turbo码和低密度奇偶校验码的结构特性置于牢固的理论基础上,但是仍然缺少令人满意的理论解释,说明为什么迭代解码算法的性能如此之好。在本文中,我们通过讨论各种迭代解码器针对尾部咬合码和循环码图的行为来迈出第一步。通过加深对带周期图的迭代最小和(MSA)和求和乘积(SPA)算法的行为的了解,我们可以设计出性能更好的代码。本文的大部分致力于性能分析。图表上的MSA和SPA的尾位代码和循环代码。我们给出了足够的条件,以使MSA在有限次数的迭代后收敛到最大似然码字。我们还使用熟悉的联合绑定参数来描述经过多次迭代后MSA的性能。对于循环代码,我们表明MSA解码器的性能在渐近性上与最大似然性一样好。对于尾码,这将取决于我们对网格的选择。

著录项

  • 作者

    Horn Gavin B.;

  • 作者单位
  • 年度 1999
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号