首页> 外文OA文献 >Micro- and Nanotechnology-Based Platforms to Study Biology at Small Scale: From DNAs to Single Cells
【2h】

Micro- and Nanotechnology-Based Platforms to Study Biology at Small Scale: From DNAs to Single Cells

机译:基于微技术和纳米技术的平台研究小规模生物学:从DNa到单细胞

摘要

This thesis describes technology platforms for various biological applications at nano- and microscale. The first platform is the silicon nanowire (SiNW) field-effect-transistor (FET)-based biosensor. SiNW FETs have unique features such as label-free, real-time, and electrical measurement, which will be demonstrated with DNA and protein sensing. We further demonstrate that using different surface chemistry can modulate the sensitivity and dynamic range of the sensor. Debye screening, one of the major bottlenecks of the technology, is shown to be circumvented by using electrostatically immobilized capture DNA for DNA sensing and a small synthetic capture agent, peptide, for protein sensing. A model for the detection of analyte by SiNW sensors is also developed and utilized to extract DNA binding kinetic parameters, which shows the potential of the platform as a more sensitive version of surface plasmon resonance (SPR).ududThe second part of this thesis focuses on a more practical and easily expandable technology, the microfluidics-based platform, to perform a single-cell-based protein analysis. We develop a flow patterning technology to generate highly parallel DNA barcodes that can be further utilized as a handle to immobilize protein capture agents, such as antibodies. As a first step, a protocol to make high-quality DNA micro-barcodes with an excellent uniformity is introduced. The uniform DNA barcode patterns enable us to perform protein detection from single cells in a microfluidic device that spans the whole glass microscope slide. A data set from about thousand experiments can be collected from a single test with the developed microfluidic device, owing to the good quality of DNA barcodes and DNA Encoded Antibody Libraries (DEAL) technology. This platform further demonstrates that multi-parameter protein detection at the single-cell level presents cellular heterogeneity which leads to new findings in biology. A quantitative version of the Le Chatelier’s principle, as derived using information theory, is applied to analyze a large amount of data from this platform. This principle provides a quantitative prediction of the role of perturbations and allows a characterization of a protein–protein interaction network. ududLastly, another application of microfluidics is demonstrated for studying interfacial chemistry on lung surfactant systems under oxidative stress, along with mass spectrometry (MS) and molecular dynamic (MD) simulation results. The findings from the MS and MD simulations provide mechanistic details for the reaction of ozone with unsaturated phospholipids, leading to possible damage of the pulmonary system by ROS or direct ozone exposure. These investigations focus on molecular transformations that occur as a result of oxidative stress. Such molecular transformations can have a strong influence on the physical properties of the pulmonary surfactant (PS) system (i.e., the surface tension and elasticity of the interface), and therefore understanding how chemical transformations influence such physical properties can provide key insights into how the PS system responds to environmental challenges. Thus, we also propose utilizing microbubbles as a model system for investigating the physical transformations of the PS system when exposed to environmental challenges. The chemical composition change, along with physical property change, is analyzed by altered bubble size and oscillatory behavior which can provide an improved understanding of the physics of a PS system when it is subjected to oxidative stress.
机译:本文描述了用于纳米和微米级各种生物学应用的技术平台。第一个平台是基于硅纳米线(SiNW)场效应晶体管(FET)的生物传感器。 SiNW FET具有独特的功能,例如无标签,实时和电学测量,将通过DNA和蛋白质传感进行演示。我们进一步证明,使用不同的表面化学物质可以调节传感器的灵敏度和动态范围。通过使用静电固定的捕获DNA进行DNA感测和使用小型合成捕获剂肽(用于蛋白质蛋白感测)可避免德比筛查技术的主要瓶颈之一。还开发了一种通过SiNW传感器检测分析物的模型,该模型可用于提取DNA结合动力学参数,从而显示出该平台作为表面等离振子共振(SPR)的更敏感版本的潜力。 ud ud本文着眼于一种更实用,更易于扩展的技术,即基于微流体的平台,以执行基于单细胞的蛋白质分析。我们开发了一种流模式技术来生成高度平行的DNA条形码,该条形码可进一步用作固定蛋白质捕获剂(例如抗体)的手柄。作为第一步,介绍了一种制备具有出色一致性的高质量DNA微条形码的协议。统一的DNA条形码模式使我们能够从横跨整个玻璃显微镜载玻片的微流体设备中的单个细胞中进行蛋白质检测。由于DNA条形码和DNA编码抗体库(DEAL)技术的优良品质,使用已开发的微流控设备进行的一次测试可以收集大约数千个实验的数据集。该平台进一步证明了在单细胞水平上的多参数蛋白质检测具有细胞异质性,这导致了生物学上的新发现。使用信息理论推导的Le Chatelier原理的定量版本被用于分析来自该平台的大量数据。该原理提供了对扰动作用的定量预测,并可以表征蛋白质-蛋白质相互作用网络。最后,展示了微流体技术的另一应用,用于研究氧化应激下肺表面活性剂系统的界面化学,以及质谱(MS)和分子动力学(MD)模拟结果。 MS和MD模拟的发现为臭氧与不饱和磷脂的反应提供了机理细节,从而可能导致ROS或直接暴露于臭氧对肺系统造成损害。这些研究集中于由于氧化应激而发生的分子转化。此类分子转化可对肺表面活性剂(PS)系统的物理特性(即界面的表面张力和弹性)产生重大影响,因此,了解化学转化如何影响此类物理特性可提供关键的见解。 PS系统应对环境挑战。因此,我们还建议利用微泡作为模型系统,以研究暴露于环境挑战中的PS系统的物理转变。通过改变气泡大小和振荡行为,可以分析化学成分的变化以及物理性质的变化,这可以更好地理解PS系统在遭受氧化应激时的物理特性。

著录项

  • 作者

    Shin Young Shik;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号