首页> 外文OA文献 >Application of finite elastic theory to the behavior of rubber-like materials
【2h】

Application of finite elastic theory to the behavior of rubber-like materials

机译:有限弹性​​理论在橡胶类材料性能中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In Part I, methods for determining the strain energy function and the associated constitutive stress-deformation law for rubber-like materials is undertaken and the mechanics of data reduction needed to determine some parameters of the theory are displayed. Experiments were performed in four different stress fields on a foamed polyurethane rubber (dilatable rubber) and on several kinds of continuum rubbers. A new strain energy function and the associated stress-deformation law for a foamed rubber are generated which correlate most of the data to a high degree of accuracy. A parameter appearing in the functional expression for a foam rubber has the same significance as Poisson's ratio in infinitesimal elastic theory. For continuum rubbers, the isotropic Neo-Hookean representations of quasi-static behavior is found to be sufficient over most of the whole range of extension.In Part II, geometrical representations of an isotropic failure surface based on various criteria are depicted both in principal stress and principal stretch spaces for elastic materials. The experimental data are compared with all criteria and the results are discussed.In Part III, finite elastic theory is used to determine the stress and deformation fields around the base of a radial crack in an infinitely long rubber log opened by a facially bonded rigid wedge-shaped bellow.In the last Part, the topology of interstices idealized as closest packed spherical holes (idealized foam structure) is investigated. Equivalent elastic constants are calculated for rubbery interstices of both hexagonal and face-centered cubic closest packings under small displacement.
机译:在第一部分中,确定橡胶类材料的应变能函数和相关的本构应力-变形定律的方法,并展示了确定该理论的某些参数所需的数据缩减机制。在泡沫聚氨酯橡胶(可拉伸橡胶)和几种连续橡胶上的四个不同应力场中进行了实验。生成了用于泡沫橡胶的新的应变能函数和相关的应力变形规律,从而将大多数数据与高精度关联起来。在泡沫橡胶的功能表达式中出现的参数与无限小弹性理论中的泊松比具有相同的意义。对于连续橡胶,发现在整个延伸范围的大部分范围内,准静态行为的各向同性新霍克斯表示已足够。弹性材料的主要拉伸空间。将实验数据与所有标准进行比较,并讨论结果。在第三部分中,使用有限弹性理论来确定由面粘结的刚性楔形波纹管打开的无限长橡胶原木中径向裂纹基部周围的应力和变形场。在最后一部分中,研究了理想化为最紧密堆积的球形孔(理想化的泡沫结构)的空隙的拓扑结构。计算小位移下六角形和面心立方最紧密堆积的橡胶间隙的等效弹性常数。

著录项

  • 作者

    Ko William L.;

  • 作者单位
  • 年度 1963
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号