首页> 外文OA文献 >Advances in computational protein design: development of more efficient search algorithms and their application to the full-sequence design of larger proteins
【2h】

Advances in computational protein design: development of more efficient search algorithms and their application to the full-sequence design of larger proteins

机译:计算蛋白质设计的进展:开发更有效的搜索算法及其在大蛋白质全序列设计中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Protein design is the art of choosing an amino acid sequence that will fold into a desired structure. Computational protein design aims to quantify and automate this process. In computational protein design, various metrics may be used to calculate an energy score for a sequence with respect to a desired protein structure. An ongoing challenge is to find the lowest-energy sequences from amongst the vast multitude of sequence possibilities. A variety of exact and approximate algorithms may be used in this search.The work in this thesis focuses on the development and testing of four search algorithms. The first algorithm, HERO, is an exact algorithm, meaning that it will always find the lowest-energy sequence if the algorithm converges. We show that HERO is faster than other exact algorithms and converges on some previously intractable designs. The second algorithm, Vegas, is an approximate algorithm, meaning that it may not find the lowest-energy sequence. We show that, under certain conditions, Vegas finds the lowest-energy sequence in less time than HERO. The third algorithm, Monte Carlo, is an approximate algorithm that had been developed previously. We tested whether Monte Carlo was thorough enough to do a challenging computational design: the full-sequence design of a protein. Monte Carlo didn’t find the lowest-energy sequence, although a similar sequence from Vegas folded into the desired structure. Several biophysical methods suggested that the Monte Carlo sequence should also fold into the desired structure. Nevertheless, the Monte Carlo structure as determined by X-ray crystallography was markedly different from the predicted structure. We attribute this discrepancy to the presence of a high concentration of dioxane in the crystallization conditions. The fourth algorithm, FC_FASTER, is an approximate algorithm for designs of fixed amino acid composition. Such designs may accelerate improvements to the physical model. We show that FC_FASTER finds lower-energy sequences and is faster than our current fixed-composition algorithm.
机译:蛋白质设计是选择可折叠成所需结构的氨基酸序列的技术。计算蛋白质设计旨在量化和自动化该过程。在计算蛋白质设计中,可以使用各种度量来计算相对于所需蛋白质结构的序列的能量得分。正在进行的挑战是从众多序列可能性中找到能量最低的序列。该搜索可以使用多种精确和近似算法。本文的工作集中在四种搜索算法的开发和测试上。第一种算法HERO是一种精确算法,这意味着,如果算法收敛,它将始终找到最低能量序列。我们证明,HERO比其他精确算法要快,并且可以收敛于某些以前很难处理的设计。第二种算法Vegas是一种近似算法,这意味着它可能找不到最低能量的序列。我们证明,在某些条件下,维加斯可以在比HERO更短的时间内找到最低的能量序列。第三种算法,蒙特卡洛,是先前已开发的一种近似算法。我们测试了Monte Carlo是否足够彻底以进行具有挑战性的计算设计:蛋白质的全序列设计。蒙特卡洛没有找到最低的能量序列,尽管来自维加斯的相似序列折叠成所需的结构。几种生物物理方法表明,蒙特卡洛序列也应折叠成所需的结构。但是,通过X射线晶体学测定的蒙特卡洛结构与预测的结构明显不同。我们将此差异归因于结晶条件下高浓度的二恶烷的存在。第四种算法FC_FASTER是一种用于固定氨基酸组成设计的近似算法。这样的设计可以加速对物理模型的改进。我们证明FC_FASTER可以找到能量较低的序列,并且比我们当前的固定组成算法更快。

著录项

  • 作者

    Hom Geoffrey;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号