首页> 外文OA文献 >Application of the two variable expansion procedure to the commensurable planar restricted three-body problem
【2h】

Application of the two variable expansion procedure to the commensurable planar restricted three-body problem

机译:两变量扩展程序在可比平面受限三体问题中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The nearly commensurable case of the planar restricted three-body problem is treated by application of the two variable expansion procedure. The polar angle of the infinitesimal body, rather than the time, is taken as the independent variable. A set of four coupled first order differential equations, which govern the long-period behavior of the orbital elements, is obtained by imposing the requirement that the assumed form of the expansions must be self-consistent. The independent variable in these equations is the "slow variable". It is then found that the short-period perturbations of the motion of the infinitesimal body do not contain small divisors or secular terms.Approximate solutions for the orbital elements are given, for two different cases. Both libratory and non-libratory solutions are found, depending upon the initial conditions. Numerical results are calculated from these solutions, and are compared to numerical computations recently reported in the literature.
机译:平面受限三体问题的几乎可比的情况通过应用两个变量展开过程来处理。将无穷小物体的极角而不是时间视为自变量。通过强加要求假设的扩展形式必须是自洽的,可以得到一组四个耦合的一阶微分方程,它们控制着轨道元素的长周期行为。这些方程式中的自变量是“慢变量”。然后发现无穷小物体的运动的短周期摄动不包含小除数或长期项。针对两种不同情况,给出了轨道元素的近似解。根据初始条件,可以找到库解决方案和非库解决方案。从这些解中计算出数值结果,并将其与文献中最近报道的数值计算进行比较。

著录项

  • 作者

    Williams Richard R.;

  • 作者单位
  • 年度 1966
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号