首页> 外文OA文献 >A variational framework for spectral discretization of the density matrix in Kohn Sham density functional theory
【2h】

A variational framework for spectral discretization of the density matrix in Kohn Sham density functional theory

机译:Kohn sham密度泛函理论中密度矩阵谱离散化的变分框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Kohn-Sham density functional theory (KSDFT) is currently the main work-horse of quantumudmechanical calculations in physics, chemistry, and materials science. From a mechanicaludengineering perspective, we are interested in studying the role of defects in theudmechanical properties in materials. In real materials, defects are typically found at udvery small concentrations e.g., vacancies occur at parts per million,uddislocation density in metals ranges from $10^{10} m^{-2}$ to $10^{15} m^{-2}$,udand grain sizes vary from nanometers to micrometers in polycrystalline materials, etc. In order to model materials atudrealistic defect concentrations using DFT, we would needudto work with system sizes beyond millions of atoms. Due to the cubic-scalingudcomputational cost with respect to the number of atoms in conventional DFT implementations, such system sizes areudunreachable. Since the early 1990s, there has been a huge interest in developing DFTudimplementations that have linear-scaling computational cost. A promisingudapproach to achieving linear-scaling cost is to approximate the density matrix inudKSDFT. The focus of thisudthesis is to provide a firm mathematical framework to study the convergence ofudthese approximations. We reformulate the Kohn-Sham densityudfunctional theory as a nested variational problem in the density matrix,udthe electrostatic potential, and a field dual to the electron density. Theudcorresponding functional is linear in the density matrix and thus amenable toudspectral representation. Based on this reformulation, we introduce a newudapproximation scheme, called spectral binning, which does not require smoothingudof the occupancy function and thus applies at arbitrarily low temperatures. Weudproof convergence of the approximate solutions with respect to spectral binningudand with respect to an additional spatial discretization of the domain. For audstandard one-dimensional benchmark problem, we present numerical experiments forudwhich spectral binning exhibits excellent convergence characteristics andudoutperforms other linear-scaling methods.
机译:Kohn-Sham密度泛函理论(KSDFT)是目前在物理,化学和材料科学领域进行量子力学力学计算的主要工具。从机械工程设计的角度来看,我们对研究缺陷在材料机械性能中的作用感兴趣。在真实的材料中,缺陷通常以非常小的浓度出现,例如,空位以百万分之几出现。金属中的位错密度范围从$ 10 ^ {10} m ^ {-2} $到$ 10 ^ {15} m ^ { -2} $, ud的晶粒大小在多晶材料等中从纳米到微米不等。为了使用DFT对超现实缺陷浓度的材料进行建模,我们将需要 ud来处理超过数百万个原子的系统尺寸。由于相对于常规DFT实现中原子数量的三次缩放计算成本,这种系统大小是无法达到的。自1990年代初以来,人们一直对开发具有线性缩放计算成本的DFT实现非常感兴趣。实现线性缩放成本的一种有希望的方法是近似于udKSDFT中的密度矩阵。本命题的重点是提供一个牢固的数学框架来研究这些逼近的收敛性。我们将Kohn-Sham密度泛函理论重新定义为密度矩阵中的嵌套变分问题,静电势和电子密度的双场。 对应的函数在密度矩阵中是线性的,因此适合于光谱表示。基于此重新制定,我们引入了一种新的 udapproximation方案,称为光谱合并,该方案不需要对占用函数进行平滑 uding,因此可以在任意低温下使用。对于频谱合并和域的其他空间离散化,我们无法保证近似解的收敛。对于一个标准的一维基准测试问题,我们提出了数值实验,它的频谱合并显示了出色的收敛特性,并且优于其他线性缩放方法。

著录项

  • 作者

    Wang Xin C.;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号