首页> 外文OA文献 >miSTAR : miRNA target prediction through modeling quantitative and qualitative miRNA binding site information in a stacked model structure
【2h】

miSTAR : miRNA target prediction through modeling quantitative and qualitative miRNA binding site information in a stacked model structure

机译:misTaR:通过在堆叠模型结构中建模定量和定性miRNa结合位点信息来预测miRNa靶标

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In microRNA (miRNA) target prediction, typically two levels of information need to be modeled: the number of potential miRNA binding sites present in a target mRNA and the genomic context of each individual site. Single model structures insufficiently cope with this complex training data structure, consisting of feature vectors of unequal length as a consequence of the varying number of miRNA binding sites in different mRNAs. To circumvent this problem, we developed a two-layered, stacked model, in which the influence of binding site context is separately modeled. Using logistic regression and random forests, we applied the stacked model approach to a unique data set of 7990 probed miRNA-mRNA interactions, hereby including the largest number of miRNAs in model training to date. Compared to lower-complexity models, a particular stacked model, named miSTAR (miRNA stacked model target prediction; www.mi-star.org), displays a higher general performance and precision on top scoring predictions. More importantly, our model outperforms published and widely used miRNA target prediction algorithms. Finally, we highlight flaws in cross-validation schemes for evaluation of miRNA target prediction models and adopt a more fair and stringent approach.
机译:在microRNA(miRNA)靶标预测中,通常需要对两个信息水平进行建模:靶标mRNA中存在的潜在miRNA结合位点数量以及每个单个位点的基因组背景。单个模型结构不足以应付这种复杂的训练数据结构,该结构由长度不等的特征向量组成,这是由于不同mRNA中不同数量的miRNA结合位点导致的。为了解决这个问题,我们开发了一个两层的堆叠模型,其中对绑定位点上下文的影响进行了单独建模。使用逻辑回归和随机森林,我们将堆叠模型方法应用于7990个探测到的miRNA-mRNA相互作用的唯一数据集,从而包括迄今为止模型训练中数量最多的miRNA。与较低复杂度的模型相比,名为miSTAR(miRNA堆叠模型目标预测; www.mi-star.org)的特定堆叠模型在得分最高的预测上显示出更高的综合性能和精度。更重要的是,我们的模型优于已发布和广泛使用的miRNA靶标预测算法。最后,我们着重指出了用于验证miRNA目标预测模型的交叉验证方案中的缺陷,并采用了更为公平和严格的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号