首页> 外文OA文献 >On the pathways feeding the H₂ production process in nutrient-replete, hypoxic conditions : commentary on the article 'Low oxygen levels contribute to improve photohydrogen production in mixotrophic non-stressed Chlamydomonas cultures', by Jurado-Oller et al., Biotechnology for Biofuels, published September 7, 2015; 8:149
【2h】

On the pathways feeding the H₂ production process in nutrient-replete, hypoxic conditions : commentary on the article 'Low oxygen levels contribute to improve photohydrogen production in mixotrophic non-stressed Chlamydomonas cultures', by Jurado-Oller et al., Biotechnology for Biofuels, published September 7, 2015; 8:149

机译:在营养充足,缺氧条件下喂养H 2生产过程的途径:文章评论“低氧水平有助于改善混合营养性非应激衣藻培养物中的光氢产生”,Jurado-Oller等,Biotechnology for Biofuels, 2015年9月7日出版; 8:149

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background: Under low O-2 concentration ( hypoxia) and low light, Chlamydomonas cells can produce H-2 gas in nutrient-replete conditions. This process is hindered by the presence of O-2, which inactivates the [FeFe]-hydrogenase enzyme responsible for H-2 gas production shifting algal cultures back to normal growth. The main pathways accounting for H-2 production in hypoxia are not entirely understood, as much as culture conditions setting the optimal redox state in the chloroplast supporting long-lasting H-2 production. The reducing power for H-2 production can be provided by photosystem II (PSII) and photofermentative processes during which proteins are degraded via yet unknown pathways. In hetero- or mixotrophic conditions, acetate respiration was proposed to indirectly contribute to H-2 evolution, although this pathway has not been described in detail. Main body: Recently, Jurado-Oller et al. (Biotechnol Biofuels 8: 149, 7) proposed that acetate respiration may substantially support H-2 production in nutrient-replete hypoxic conditions. Addition of low amounts of O-2 enhanced acetate respiration rate, particularly in the light, resulting in improved H-2 production. The authors surmised that acetate oxidation through the glyoxylate pathway generates intermediates such as succinate and malate, which would be in turn oxidized in the chloroplast generating FADH(2) and NADH. The latter would enter a PSII-independent pathway at the level of the plastoquinone pool, consistent with the light dependence of H-2 production. The authors concluded that the water-splitting activity of PSII has a minor role in H-2 evolution in nutrient-replete, mixotrophic cultures under hypoxia. However, their results with the PSII inhibitor DCMU also reveal that O-2 or acetate additions promoted acetate respiration over the usually dominant PSII-dependent pathway. The more oxidized state experienced by these cultures in combination with the relatively short experimental time prevented acclimation to hypoxia, thus precluding the PSII-dependent pathway from contributing to H-2 production. Conclusions: In Chlamydomonas, continuous H-2 gas evolution is expected once low O-2 partial pressure and optimal reducing conditions are set. Under nutrient-replete conditions, the electrogenic processes involved in H-2 photoproduction may rely on various electron transport pathways. Understanding how physiological conditions select for specific metabolic routes is key to achieve economic viability of this renewable energy source.
机译:背景:在低O-2浓度(低氧)和低光照下,衣藻可以在营养丰富的条件下产生H-2气体。 O-2的存在阻碍了这一过程,O-2会使负责H-2气体产生的[FeFe]-氢化酶失活,从而使藻类培养物恢复正常生长。关于在低氧条件下产生H-2的主要途径尚未完全理解,就像在支持持久H-2产生的叶绿体中设定最佳氧化还原状态的培养条件一样。 H-2产生的还原能力可以通过光系统II(PSII)和光发酵过程来提供,在此过程中蛋白质通过未知途径被降解。在异养或混养条件下,乙酸盐呼吸被提议间接促进H-2的进化,尽管该途径尚未详细描述。主体:最近,Jurado-Oller等人。 (Biotechnol Biofuels 8:149,7)提出乙酸盐呼吸可以在营养充足的低氧条件下基本支持H-2的产生。少量O-2的添加提高了乙酸盐的呼吸速率,尤其是在光照条件下,从而提高了H-2的产生。作者推测,乙酸通过乙醛酸途径的氧化会生成中间体,例如琥珀酸酯和苹果酸,它们会在叶绿体中被氧化,从而生成FADH(2)和NADH。后者将在质体醌库水平上进入PSII非依赖性途径,这与H-2产生的光依赖性一致。作者得出的结论是,在缺氧条件下,营养丰富的混合营养培养物中PSII的水分解活性在H-2的进化中起着较小的作用。然而,他们对PSII抑制剂DCMU的研究结果还表明,添加O-2或添加乙酸盐可以促进乙酸盐呼吸,而这些呼吸作用通常是依赖于PSII依赖性途径。这些培养物所经历的更高的氧化状态与相对较短的实验时间相结合阻止了对缺氧的适应,因此排除了PSII依赖性途径有助于H-2的产生。结论:在衣藻中,一旦设定了低O-2分压和最佳还原条件,就有望连续释放H-2气体。在营养丰富的条件下,参与H-2光产生的电化过程可能依赖于各种电子传输途径。了解生理条件如何选择特定的代谢途径是实现这种可再生能源经济可行性的关键。

著录项

相似文献

  • 外文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号