首页> 外文OA文献 >Stochastic modeling error reduction using Bayesian approach coupled with an adaptive Kriging based model
【2h】

Stochastic modeling error reduction using Bayesian approach coupled with an adaptive Kriging based model

机译:使用贝叶斯方法结合基于自适应克里金模型的随机建模误差降低

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Purpose - Magnetic material properties of an electromagnetic device (EMD) can be recovered by solving a coupled experimental numerical inverse problem. In order to ensure the highest possible accuracy of the inverse problem solution, all physics of the EMD need to be perfectly modeled using a complex numerical model. However, these fine models demand a high computational time. Alternatively, less accurate coarse models can be used with a demerit of the high expected recovery errors. The purpose of this paper is to present an efficient methodology to reduce the effect of stochastic modeling errors in the inverse problem solution. Design/methodology/approach - The recovery error in the electromagnetic inverse problem solution is reduced using the Bayesian approximation error approach coupled with an adaptive Kriging-based model. The accuracy of the forward model is assessed and adapted a priori using the cross-validation technique. Findings - The adaptive Kriging-based model seems to be an efficient technique for modeling EMDs used in inverse problems. Moreover, using the proposed methodology, the recovery error in the electromagnetic inverse problem solution is largely reduced in a relatively small computational time and memory storage. Originality/value - The proposed methodology is capable of not only improving the accuracy of the inverse problem solution, but also reducing the computational time as well as the memory storage. Furthermore, to the best of the authors knowledge, it is the first time to combine the adaptive Kriging-based model with the Bayesian approximation error approach for the stochastic modeling error reduction.
机译:目的-电磁装置(EMD)的磁性材料特性可以通过解决耦合的实验数值反问题来恢复。为了确保反问题解决方案的最高精度,需要使用复杂的数值模型对EMD的所有物理学进行完美建模。但是,这些精细模型需要很高的计算时间。或者,可以使用精度较低的粗略模型,但缺点是预期回收率高。本文的目的是提出一种有效的方法,以减少反问题解决方案中随机建模误差的影响。设计/方法/方法-使用贝叶斯近似误差方法和基于Kriging的自适应模型,可以减少电磁逆问题解决方案中的恢复误差。使用交叉验证技术先验评估正向模型的准确性并对其进行调整。发现-基于自适应Kriging的模型似乎是一种用于建模反问题中EMD的有效技术。而且,使用所提出的方法,在相对小的计算时间和存储器存储中大大减小了电磁反问题解决方案中的恢复误差。原创性/价值-所提出的方法不仅能够提高反问题解决方案的准确性,而且能够减少计算时间以及存储空间。此外,据作者所知,这是首次将基于自适应Kriging的模型与贝叶斯逼近误差方法相结合,以减少随机建模误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号