首页> 外文OA文献 >In situ analysis of the high temperature deformation and fracture mechanisms of a γ-TiAl alloy
【2h】

In situ analysis of the high temperature deformation and fracture mechanisms of a γ-TiAl alloy

机译:的γ-Tial基合金的高温变形和断裂机制的情况分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Gamma titanium aluminides are intermetallic alloys with great potential for aerospace applications in low pressure turbines (LPT) because they can provide increased thrust-to-weight ratios and improved efficiency under aggressive environments at temperatures up to 750 °C. Due to that, γ-TiAl alloys are projected to replace the heavier Ni-base superalloys currently used for LPT blades manufacturing.The objective of this research work is to study the deformation and fracture mechanisms of a γ-TiAl alloy, Ti-45Al-2Nb-2Mn(at.%)+0.8(vol.%)TiB2 (Ti4522XD), at service temperatures, and to relate them to specific microstructural features.An array of microstructures was first generated by processing the investigated alloy by centrifugal casting (CC), in the form of LPT blades and rectangular specimens, and by powder metallurgy (PM) techniques, including hot isostatic pressing (HIP) and field assisted hot pressing (FAHP). Several post-processing heat treatments were carried out in both CC and PM samples. A thorough characterization of the microstructures thus generated was performed by scanning and transmission electron microscopy. In situ mechanical tests were then carried out in selected samples according to specific microstructures in a scanning electron microscope (SEM) aided by electron backscatter diffraction (EBSD) at 700 °C. In particular, constant strain rate (=10⁻³ s⁻¹) and constant stress (creep) (σ=250-450 MPa) tensile tests were performed and the microstructural evolution of selected areas was periodically imaged by SEM. The main findings of this research are summarized below.First, in lamellar centrifugally cast microstructures deformed under creep conditions colony boundary cracking was observed to be the main fracture mechanism. It occurred at low and high stresses, during the secondary and the tertiary creep stages, respectively. The same phenomenon has been observed to predominate along the grain boundaries in finer duplex powder metallurgy microstructures under creep conditions. The occurrence of grain/colony boundary cracking reveals the activation of grain/colony boundary sliding (G/CBS) during creep deformation of lamellar and duplex microstructures, which leads to the nucleation of cracks at triple points. Moreover, in lamellar microstructures creep tested at high stresses (σ>400 MPa) and tensile tested at constant strain rate, the appearance of interlamellar ledges was observed, revealing that interlamellar areas become weaker as the stress increases.Furthermore, the results obtained suggest that, in lamellar microstructures tested at high temperature and constant strain rate, true twin lamella boundaries constitute the weakest obstacles to dislocation motion. Thus, the relevant length scale might be influenced by the distance between non-true twin boundaries. Crystallographic slip is also observed to contribute to deformation under creep conditions. The slip activity during creep deformation was evaluated by trace analysis and a methodology to estimate the relative activity of ordinary and superdislocations, as well as the corresponding critical resolved shear stresses (CRSS), is proposed. This work showed the presence in both lamellar and duplex microstructures of a significant dislocation activity that does not comply with the Schmid law with respect to the applied stress and which thus seems to be a response to local stresses. Intragranular slip is suggested to be an active accommodation mechanism for GBS during creep of duplex microstructures. -------------------------------------------------------
机译:γ钛铝化物是金属间合金,在低压涡轮机(LPT)的航空航天应用中具有很大的潜力,因为它们可以在高达750°C的恶劣环境下提供更大的推力重量比和更高的效率。因此,预计γ-TiAl合金将替代目前用于制造LPT叶片的较重的镍基高温合金。本研究的目的是研究γ-TiAl合金Ti-45Al-的变形和断裂机理。 2Nb-2Mn(at。%)+ 0.8(vol。%)TiB2(Ti4522XD),在使用温度下,并将其与特定的微结构特征相关联。首先通过离心铸造(CC)对被研究的合金进行处理,产生了一系列微结构。 ),采用LPT叶片和矩形试样的形式,并采用粉末冶金(PM)技术,包括热等静压(HIP)和现场辅助热压(FAHP)。 CC和PM样品均进行了几种后处理热处理。通过扫描和透射电子显微镜对由此产生的微观结构进行了全面的表征。然后,根据特定的微观结构,在700°C下通过电子背散射衍射(EBSD)在扫描电子显微镜(SEM)中根据选定的微结构对选定的样品进行原位机械测试。尤其是,进行了恒定的应变速率(= 10 -3 s -1)和恒定的应力(蠕变)(σ= 250-450 MPa)拉伸试验,并通过SEM定期对选定区域的微观结构演变进行成像。本研究的主要结论归纳如下:首先,在蠕变条件下变形的层状离心铸造显微组织中,以菌落边界裂纹为主要断裂机理。它分别在第二和第三蠕变阶段发生在低应力和高应力下。在蠕变条件下,在较细的双相粉末冶金显微组织中,沿晶界观察到了相同的现象。晶粒/集落边界裂纹的出现揭示了层状和双相微结构蠕变变形过程中晶粒/集落边界滑动(G / CBS)的激活,从而导致裂纹在三个点成核。此外,在高应力(σ> 400 MPa)的蠕变测试和恒定应变速率下的拉伸测试中,观察到层间壁架的出现,表明层间区域随着应力的增加而变弱。在高温和恒定应变率下测试的层状微结构中,真正的双晶层边界是位错运动的最弱障碍。因此,相关的长度尺度可能会受到非真实孪生边界之间距离的影响。还观察到晶体滑移在蠕变条件下有助于变形。通过跟踪分析评估了蠕变变形过程中的滑动活动,并提出了一种方法来估算常位错和超位错的相对活动,以及相应的临界解析切应力(CRSS)。这项工作表明,在层状和双相微观结构中均存在明显的位错活性,该位错活性在施加应力方面不符合施密德定律,因此似乎是对局部应力的响应。晶粒内滑动被认为是双相微结构蠕变过程中GBS的一种主动调节机制。 -------------------------------------------------- -----

著录项

  • 作者

    Muñoz Moreno Rocío;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号