首页> 外文OA文献 >Dexterous robotic motion planning using intelligent algorithms
【2h】

Dexterous robotic motion planning using intelligent algorithms

机译:使用智能算法的灵巧机器人运动规划

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The fundamental purpose of robots is to help humans in a variety of difficult tasks, enabling people to increase their capabilities of strength, energy, speed, memory, and to operate in hazardous environments and many other applications. Service robots, more precisely mobile manipulators, incorporate one or two robotic arms and a mobile base, and must accomplish complex manipulations tasks, interacting with tools or objects and navigating through cluttered environments. To this end, the motion planning problem plays a key role in the ahead calculation of robot movements to interact with its world and achieve the established goals. The objective of this work is to design various motion planning methods in order to improve the autonomy of MANFRED-2, which is a mobile robot fully developed by the Robotics Lab research group of the Systems Engineering and Automation Department of the Carlos III University of Madrid.Mobile robots need to calculate accurate paths in order to navigate and interact with objects throughout their surrounding area. In this work, we have developed motion planning algorithms for both navigation and manipulation. The presented algorithms for path planning are based on the Fast Marching Square method and include a replanner with subgoals, an anytime triangular planner, and a nonholonomic approach. The replanner with subgoals starts by generating a smooth and safe global path with the Fast Marching Square method. Then, this path is divided into multiple subpaths separated by equidistant nodes (defined by topological or metric constraints). After that, the obstacles information is progressively added and modifications are made only when the original path is unreachable. The most important advantage with respect to similar approaches is that the generated sub-paths are always efficient in terms of smoothness and safeness. Besides, the computational cost is low enough to use the algorithm in real-time. The anytime triangular planner, such as “Anytime” algorithms, quickly finds a feasible but not necessarily optimal motion plan which is incrementally improved. One important characteristic that this type of algorithms must satisfy is that the path must be generated in real-time. The planner relies on the Fast Marching Square method over a triangular mesh structure.Different variants are introduced and compared under equal circumstances that produce different paths in response time and quality, which leads us to an additional consideration. As in the field of benchmarking it is becoming increasingly difficult to compare new planners approaches because of the lack of a general benchmarking platform, improvements to existing approaches are suggested. Finally, the nonholonomic approach is presented. It is based on the Fast Marching Square method and its application to car-like robots. In order to apply the proposed method, a three dimensional configuration space of the environment is considered. The first two dimensions are given by the position of the robot, and the third one by its orientation. This means that we operate over the configuration space instead of the bi-dimensional environment map. Besides, the trajectory is computed along the configuration space taking into account the dimensions of the vehicle. In this way, it is possible to guarantee the absence of collisions. The proposed method is consistent at local and global scale because it guarantees a motion path solution, if it exists, and does not require global replanning supervision when a local trap is detected.Once a mobile robot has reached a goal location, it usually triggers the servomotors enclosed inside its robotic arm to manipulate a target. The manipulation algorithms presented in this work include the adaptation of trajectories, a planner with adaptive dimensionality, and an implementation of a dimensionality reduction approach inside a nuclear device. The adaptation of manipulation trajectories enables the robot to accomplish a task in different locations by using Evolution Strategies and forward kinematics. This approach avoids all the inconveniences that inverse kinematics imply, as well as the convergence problems in singular kinematic configurations.The planner with adaptive dimensionality reduces the complexity of high-dimensional path planning. First, a Rapidly-exploring Random Tree trajectory is generated using the full degrees of freedom of the robotic arm. Then, a geometry as a closed tube is built around the path line and the Fast Marching Square method is applied from start to goal using three dimensions inside the surface. The resulted three dimensional path is converted to full degrees of freedom with the inverse kinematics of the robot. The result is a smoother and safer path, visually more human friendly.Additionally, the search space is reduced, and therefore, also the planning time and the memory requirements. The application inside the nuclear device, similarly to the previous approach, reduces the degrees of freedom of the problem (but this time to two dimensions due to the mostly planar nature of the robot). The manipulation path is smooth and safe in an environment where safety must be the primarily objective.The motion planning algorithms have been tested in numerous experiments. The fast response of the methods allows its application in real-time tasks.
机译:机器人的基本目的是帮助人类完成各种艰巨的任务,使人们能够增强力量,精力,速度,记忆力,并能在危险环境和许多其他应用中操作。服务机器人,更确切地说是移动机械手,包含一个或两个机械臂和一个可移动基座,并且必须完成复杂的操纵任务,与工具或对象进行交互并在混乱的环境中导航。为此,运动计划问题在机器人运动的提前计算中起着关键作用,以与机器人世界互动并实现既定目标。这项工作的目的是设计各种运动计划方法,以提高MANFRED-2的自主性,MANFRED-2是由马德里卡洛斯三世大学系统工程和自动化系的机器人实验室研究小组完全开发的移动机器人移动机器人需要计算准确的路径,才能在其周围区域导航并与对象交互。在这项工作中,我们开发了用于导航和操纵的运动计划算法。提出的路径规划算法基于快速行进平方方法,包括带有子目标的重新规划器,随时三角规划器和非完整方法。具有子目标的重新计划程序首先使用“快速进场平方”方法生成一条平滑且安全的全局路径。然后,将此路径划分为由等距节点(由拓扑或度量约束定义)分隔的多个子路径。之后,仅当原始路径不可到达时,逐步添加障碍物信息并进行修改。就类似方法而言,最重要的优点是,就平滑度和安全性而言,生成的子路径始终有效。此外,计算成本低到足以实时使用该算法。随时三角计划器,例如“ Anytime”算法,可以迅速找到可行但不一定最佳的运动计划,并逐步加以改进。这种算法必须满足的一个重要特征是必须实时生成路径。计划者在三角网状结构上依靠快速行进平方方法,在相同的情况下引入并比较了不同的变体,这些变体在响应时间和质量上产生不同的路径,这使我们需要额外考虑。由于在基准测试领域中,由于缺乏通用的基准测试平台,比较新的计划者方法变得越来越困难,因此建议对现有方法进行改进。最后,提出了非完整方法。它基于快速行进平方方法,并应用于类似汽车的机器人。为了应用所提出的方法,考虑了环境的三维配置空间。前两个尺寸由机器人的位置确定,第三个尺寸由其方向确定。这意味着我们在配置空间而不是二维环境图上进行操作。此外,考虑到车辆的尺寸,沿着配置空间计算轨迹。这样,可以保证没有碰撞。所提出的方法在本地和全局范围内是一致的,因为它保证了运动路径解决方案(如果存在),并且在检测到局部陷阱时不需要全局重新计划监督。一旦移动机器人到达目标位置,通常会触发伺服电机封装在其机械臂内部,可操纵目标。这项工作中提出的操纵算法包括轨迹的适应,具有自适应尺寸的计划器以及核装置内部尺寸降低方法的实现。操纵轨迹的适应性使机器人可以通过使用Evolution Strategies和正向运动学在不同位置完成任务。这种方法避免了逆运动学所带来的所有不便,以及奇异运动学配置中的收敛性问题。具有自适应维数的规划器降低了高维路径规划的复杂性。首先,利用机械臂的全部自由度生成快速探索的随机树轨迹。然后,围绕路径线构建作为封闭管的几何形状,并使用曲面内部的三个维度从头到尾应用Fast Marching Square方法。通过机器人的逆运动学将所得的三维路径转换为完全自由度。结果是一条更平滑,更安全的路径,在视觉上更人性化。此外,搜索空间减少了,因此也减少了计划时间和内存需求。核装置内部的应用程序,类似于先前的方法降低了问题的自由度(但是由于机器人的大部分平面性质,这次是二维的)。在必须以安全为首要目标的环境中,操纵路径是平稳且安全的。运动计划算法已在众多实验中进行了测试。这些方法的快速响应使其可以应用于实时任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号