首页> 外文OA文献 >Optimal railway infrastructure maintenance and repair policies to manage risk under uncertainty with adaptive control
【2h】

Optimal railway infrastructure maintenance and repair policies to manage risk under uncertainty with adaptive control

机译:通过自适应控制管理不确定风险的最佳铁路基础设施维护和维修政策

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The aim of this paper is to apply two adaptive control formulations under uncertainty, say open-loop and closed-loop, to the process of developing maintenance and repair policies for railway infrastructures. To establish the optimal maintenance and repair policies for railway lines, we use a previous design of risk model based on two factors: the criticality and the deterioration ratios of the facilities. Thus, our theory benefits from the Reliability Centered Management methodology application, but it also explicitly models uncertainty in characterizing a facility deterioration rate to decide the optimal policy to maintain the railway infrastructures. This may be the major contribution of this work. To verify the models presented, a computation study has been developed and tested for a real scenario: the railway line Villalba-Cercedilla in Madrid (Spain). Our results demonstrate again that applying any adaptive formulation, the cost of the railway lines maintenance shown is decreased. Moreover applying a Closed Loop Formulation the cost associated to the risk takes smaller values (40% less cost for the same risk than the deterministic approach), but with an Open Loop formulation the generated risk in the railway line is also smaller.
机译:本文的目的是将不确定性下的两个自适应控制公式(开环和闭环)应用于制定铁路基础设施维护和维修政策的过程。为了建立铁路线的最佳维护和维修政策,我们使用以前基于两个因素的风险模型设计:设施的关键性和恶化率。因此,我们的理论得益于以可靠性为中心的管理方法论的应用,但它也明确地对不确定性进行建模,以表征设施的退化率,从而确定维护铁路基础设施的最佳策略。这可能是这项工作的主要贡献。为了验证所提供的模型,已经针对实际场景进行了计算研究并进行了测试:铁路线位于西班牙马德里的Villalba-Cercedilla。我们的结果再次证明,采用任何自适应公式,都会减少所示的铁路维护成本。此外,采用闭环公式,与风险相关的成本采用较小的值(同一风险的成本比确定性方法少40%),但采用开环公式,铁路线中产生的风险也较小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号