首页> 外文OA文献 >A model for generating relativistic electrons in the Earth's inner magnetosphere based on gyroresonant wave-particle interactions
【2h】

A model for generating relativistic electrons in the Earth's inner magnetosphere based on gyroresonant wave-particle interactions

机译:基于gyroresonant波 - 粒子相互作用在地球内部磁层中产生相对论电子的模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

During the recovery phase of a magnetic storm, fluxes of relativistic (> 1 MeV) electrons in the inner magnetosphere (3 ≤ L ≤ 6) increase to beyond prestorm levels, reaching a peak ∼4 days after the initiation of the storm. In order to account for the generation of these "killer electrons" a model is presented primarily on the basis of the stochastic acceleration of electrons by enhanced whistler mode chorus. In terms of a quasi-linear formulation a kinetic (Fokker-Planck) equation for the electron energy distribution is derived comprising an energy diffusion coefficient based on gyroresonant electron-whistler mode wave interaction and parallel wave propagation, a source term representing substorm-produced (lower-energy) seed electrons, and a loss term representing electron precipitation due to pitch angle scattering by whistler mode waves and electromagnetic ion cyclotron (EMIC) waves. Steady state solutions for the electron energy distribution are constructed and fitted to an empirically derived relativistic Maxwellian distribution for the high-energy "hard" electron population at geosynchronous orbit. If the average whistler amplitude is sufficiently large, for instance, 75-400 pT, dependent on the values of the other model parameters, and assuming a background plasma density of N 0 = 10 cm -3 outside the plasmasphere, then a good fit to the empirical distribution is obtained and corresponds to a timescale for the formation of the high-energy steady state distribution of 3-5 days. For a lower representative value of the background plasma density, N 0 = 1 cm -3, smaller whistler amplitudes, in the range 13-72 pT, can produce the high-energy distribution in the required time frame of several days. It is concluded from the model calculations that the process of stochastic acceleration by gyroresonant electron-whistler mode wave interaction in conjunction with pitch angle scattering by EMIC waves constitutes a viable mechanism for generating killer electrons during geomagnetic storms. The mechanism is expected to be particularly effective for the class of small and moderate storms possessing a long-lasting recovery phase during which many substorms occur.
机译:在磁暴的恢复阶段,内磁层(3≤L≤6)中相对论(> 1 MeV)电子的通量增加到超过暴风前水平,在暴风爆发后约4天达到峰值。为了说明这些“杀手电子”的产生,主要基于增强的惠斯勒模式合唱对电子的随机加速的基础上提出了一种模型。根据准线性公式,推导了电子能量分布的动力学(Fokker-Planck)方程,该方程包含基于回旋电子惠斯勒模式波相互作用和平行波传播的能量扩散系数,表示次暴风雨产生的源项(较低能量的种子电子,以及一个损耗项,表示由于惠斯勒模式波和电磁离子回旋加速器(EMIC)波的俯仰角散射而引起的电子沉淀。构造了电子能量分布的稳态解,并将其拟合到经验推导的地球同步轨道上高能“硬”电子群体的相对论麦克斯韦分布。如果平均哨声幅度足够大,例如75-400 pT(取决于其他模型参数的值),并假设等离子层外部的背景等离子体密度为N 0 = 10 cm -3,则非常适合获得经验分布,并对应于3-5天形成高能稳态分布的时间尺度。对于较低的背景等离子体密度代表值N 0 = 1 cm -3,较小的啸叫幅度在13-72 pT的范围内,可以在几天内所需的时间范围内产生高能量分布。由模型计算得出的结论是,回旋电子-吹口哨模式波相互作用和EMIC波的俯仰角散射共同引起的随机加速过程是在地磁暴期间产生杀手电子的可行机制。预期该机制对于具有长期恢复阶段的中小型风暴类别特别有效,在此阶段会发生许多次风暴。

著录项

  • 作者

    Summers Danny; Ma Chun-yu;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号