首页> 外文OA文献 >Particle filter based target tracking from X-bandudnautical radar images
【2h】

Particle filter based target tracking from X-bandudnautical radar images

机译:基于粒子滤波器的X波段目标跟踪 ud航海雷达图像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this thesis, two particle filter (PF) based visual tracking approaches are designedudfor maneuvering target tracking from X-band nautical radar images: a PF-only basedudapproach and a combined particle-Kalman filters (PF-KF) based approach. Unlikeudexisting Kalman filter (KF) based target tracking algorithms used by nautical radar,udthese two proposed tracking methods both employ a kernel-based histogram model toudrepresent the target in the radar image, and a Bhattacharyya coefficient based similar-udity distance between reference and candidate target models to provide the likelihoodudfunction for the particle filtering. However, the PF-KF method applies a samplingudimportance resampling (SIR) particle filter to obtain preliminary target positions,udand then a Kalman filter to derive refined target positions and velocities. Moreover,udseveral strategies are also proposed to improve the tracking accuracy and stability.udThese strategies include an enhanced reference target model construction method,udupdating reference target model, and adaptive KF for maneuver. Comparison ofudthe target information obtained by the proposed PF-KF method from various fieldudX-band nautical radar image sequences with those measured by GPS shows the pro-udposed approach can provide a reliable and flexible online target tracking for nauticaludradar application. It is also shown that, in the scenario of strong sea clutter, theudproposed approach outperforms the PF-only based approach and the classical track-uding approach which combines order-statistics (OS) CFAR processing and the Kalmanudfilter.
机译:本文设计了两种基于粒子滤波的视觉跟踪方法 ud,用于从X波段航海雷达图像进行机动目标跟踪:基于PF的 udapproach方法和基于粒子卡尔曼滤波的组合方法(PF-KF) 。与航海雷达使用的基于离散化卡尔曼滤波器(KF)的目标跟踪算法不同,这两种建议的跟踪方法都采用基于核的直方图模型来表示雷达图像中的目标,并使用基于Bhattacharyya系数的相似度参考模型和候选目标模型之间的距离,为粒子滤波提供似然函数。但是,PF-KF方法应用采样不重要的重采样(SIR)粒子滤波器来获取初始目标位置,然后使用卡尔曼滤波器来得出精确的目标位置和速度。此外,还提出了多种策略来提高跟踪精度和稳定性。这些策略包括增强的参考目标模型构建方法,更新参考目标模型以及用于机动的自适应KF。通过所提出的PF-KF方法从各种野外 udX波段航海雷达图像序列中获得的目标信息与GPS测量的目标信息的比较表明,该提议的方法可以提供可靠,灵活的航海 udradar在线目标跟踪应用。还表明,在强海浪的情况下,建议的方法优于仅基于PF的方法和结合了阶次统计(OS)CFAR处理和Kalman udfilter的经典跟踪方法。

著录项

  • 作者

    Chen Supeng;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号