首页> 外文OA文献 >Modified multiscale sample entropy computation of laser speckle contrast images and comparison with the original multiscale entropy algorithm
【2h】

Modified multiscale sample entropy computation of laser speckle contrast images and comparison with the original multiscale entropy algorithm

机译:改进的激光对比度散斑图像多尺度样本熵计算及与原始多尺度熵算法的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Laser speckle contrast imaging (LSCI) enables a noninvasive monitoring of microvascular perfusion. Some studies have proposed to extract information from LSCI data through their multiscale entropy (MSE). However, for reaching a large range of scales, the original MSE algorithm may require long recordings for reliability. Recently, a novel approach to compute MSE with shorter data sets has been proposed: the short-time MSE (sMSE). Our goal is to apply, for the first time, the sMSE algorithm in LSCI data and to compare results with those given by the original MSE. Moreover, we apply the original MSE algorithm on data of different lengths and compare results with those given by longer recordings. For this purpose, synthetic signals and 192 LSCI regions of interest (ROIs) of different sizes are processed. Our results show that the sMSE algorithm is valid to compute the MSE of LSCI data. Moreover, with time series shorter than those initially proposed, the sMSE and original MSE algorithms give results with no statistical difference from those of the original MSE algorithm with longer data sets. The minimal acceptable length depends on the ROI size. Comparisons of MSE from healthy and pathological subjects can be performed with shorter data sets than those proposed until now.
机译:激光散斑对比成像(LSCI)能够对微血管灌注进行无创监测。一些研究建议通过其多尺度熵(MSE)从LSCI数据中提取信息。但是,为了达到较大的比例范围,原始MSE算法可能需要长时间记录才能确保可靠性。最近,提出了一种使用较短数据集计算MSE的新颖方法:短时MSE(sMSE)。我们的目标是首次在LSCI数据中应用sMSE算法,并将结果与​​原始MSE给出的结果进行比较。此外,我们将原始的MSE算法应用于不同长度的数据,并将结果与​​更长的记录所给出的结果进行比较。为此,要处理合成信号和不同大小的192个LSCI感兴趣区域(ROI)。我们的结果表明,sMSE算法对于计算LSCI数据的MSE是有效的。而且,由于时间序列比最初提出的时间序列短,因此sMSE和原始MSE算法所得出的结果与具有更长数据集的原始MSE算法所得出的结果没有统计学差异。最小可接受长度取决于ROI大小。来自健康和病理受试者的MSE的比较数据集比迄今为止提出的要短。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号