首页> 外文OA文献 >IATSJ: Identification of anomalies in time series data using similarity join processing
【2h】

IATSJ: Identification of anomalies in time series data using similarity join processing

机译:IaTsJ:使用相似性连接处理识别时间序列数据中的异常

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There is continues capture of large streaming data vital for application such as intensive health care system, Sensor networks, Object tracking etc.,. Data reduction of these huge data stream is carried out by similarity join processing which tracks the abnormal contents in real time data. The identification of anomalies such as abnormalities in Electro Cardio Gram (ECG) of an heart patient, predicting future casualties in weather monitor monitoring system, and providing heuristics in object tracking has to be effectively carried out. To achieve this we propose Identification of Anomalies in Time Series Data using Similarity Join Processing (IATSJ) to identify the anomalies by using Alternate Multilevel Segment Mean (AMSM) technique which reduces the data dimension and applying similarity join processing on these reduced data using sliding window concept. Experimental results show that, the time and space efficiency of our approach in anomaly detection from the given time series is better than the existing methods.
机译:持续捕获对应用程序至关重要的大型流数据,例如密集型医疗保健系统,传感器网络,对象跟踪等。通过跟踪实时数据中异常内容的相似性联接处理,可以对这些巨大的数据流进行数据缩减。必须有效地进行异常识别,例如心脏病患者的心电图(ECG)异常,预测天气监控系统的伤亡人数以及提供对象跟踪的启发式方法。为了实现这一目标,我们提出了使用相似性联接处理(IATSJ)识别时间序列数据中的异常的方法,以通过使用备用多级分段均值(AMSM)技术来识别异常,该技术减小了数据维,并使用滑动窗口对这些简化后的数据进行了相似性联接处理概念。实验结果表明,在给定的时间序列中,我们的方法进行异常检测的时空效率要优于现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号