首页> 外文OA文献 >Symmetric Gauss Legendre quadrature formulas for composite numerical integration over a triangular surface
【2h】

Symmetric Gauss Legendre quadrature formulas for composite numerical integration over a triangular surface

机译:对称高斯Legendre积分公式用于三角形表面上的复合数值积分

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper first presents a Gauss Legendre quadrature method for numerical integration of View the MathML source, where f(x, y) is an analytic function in x, y and T is the standard triangular surface: {(x, y)∣0 ⩽ x, y ⩽ 1, x + y ⩽ 1} in the Cartesian two dimensional (x, y) space. We then use a transformation x = x(ξ, η), y = y(ξ, η ) to change the integral I to an equivalent integral View the MathML source, where S is now the 2-square in (ξ, η) space: {(ξ, η)∣ − 1 ⩽ ξ, η ⩽ 1}. We then apply the one dimensional Gauss Legendre quadrature rules in ξ and η variables to arrive at an efficient quadrature rule with new weight coefficients and new sampling points. We then propose the discretisation of the standard triangular surface T into n2 right isosceles triangular surfaces Ti (i = 1(1)n2) each of which has an area equal to 1/(2n2) units. We have again shown that the use of affine transformation over each Ti and the use of linearity property of integrals lead to the result:ududView the MathML sourceudTurn MathJax onududwhere View the MathML source and x = xi(X, Y) and y = yi(X, Y) refer to affine transformations which map each Ti in (x, y) space into a standard triangular surface T in (X, Y) space. We can now apply Gauss Legendre quadrature formulas which are derived earlier for I to evaluate the integral View the MathML source. We observe that the above procedure which clearly amounts to Composite Numerical Integration over T and it converges to the exact value of the integral View the MathML source, for sufficiently large value of n, even for the lower order Gauss Legendre quadrature rules. We have demonstrated this aspect by applying the above explained Composite Numerical Integration method to some typical integrals.
机译:本文首先提出了一种高斯勒格勒勒正交积分方法,用于对View进行数值积分,其中f(x,y)是x,y中的解析函数,T是标准三角形曲面:{(x,y)∣0⩽ x,y⩽1,x + y⩽1}在笛卡尔二维(x,y)空间中。然后,我们使用变换x = x(ξ,η),y = y(ξ,η)将积分I更改为等效积分,其中S现在是(ξ,η)中的2平方空间:{(ξ,η)∣-1ξ,η⩽1}。然后,我们在ξ和η变量中应用一维高斯勒让德正交规则,以得到具有新权重系数和新采样点的有效正交规则。然后,我们建议将标准三角形表面T离散化为n2个等腰三角形三角形表面Ti(i = 1(1)n2),每个面积等于1 /(2n2)个单位。我们再次证明对每个Ti使用仿射变换和积分的线性特性会导致结果: ud ud查看MathML源 ud打开MathJax on ud ud其中x = xi( X,Y)和y = yi(X,Y)表示仿射变换,该仿射变换将(x,y)空间中的每个Ti映射到(X,Y)空间中的标准三角形表面T。现在,我们可以应用高斯Legendre正交公式,这些公式对于我来说可以用来评估积分。我们注意到,上述过程显然等于T上的复合数值积分,并且对于n足够大的值,即使对于低阶高斯勒让德正交规则,也收敛于积分的精确值。我们已经通过将上面解释的复合数值积分方法应用于一些典型积分来证明了这一方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号