首页> 外文OA文献 >On the application of two symmetric Gauss Legendre quadrature rules for composite numerical integration over a triangular surface
【2h】

On the application of two symmetric Gauss Legendre quadrature rules for composite numerical integration over a triangular surface

机译:两个对称Gauss Legendre积分规则在三角形表面复合数值积分中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

This paper first presents a Gauss Legendre quadrature rule for the evaluation of I = ∫ ∫T f (x, y) d x d y, where f (x, y) is an analytic function in x, y and T is the standard triangular surface: {(x, y) | 0 ≤ x, y ≤ 1, x + y ≤ 1} in the two space (x, y). We transform this integral into an equivalent integral ∫ ∫S f (x (ξ, η), y (ξ, η)) frac(∂ (x, y), ∂ (ξ, η)) d ξ d η where S is the 2-square in (ξ, η) space: {(ξ, η) | - 1 ≤ ξ, η ≤ 1}. We then apply the one-dimensional Gauss Legendre quadrature rules in ξ and η variables to arrive at an efficient Quadrature rules with new weight coefficients and new sampling points. Then a second Gauss Legendre quadrature rule of composite type is obtained. This rule is derived by discretising T into three new triangles TiC (i = 1, 2, 3) of equal size which are obtained by joining centroid of T, C = (1 / 3, 1 / 3) to the three vertices of T. By use of affine transformations defined over each TiC and the linearity property of integrals leads to the result:I = underover(∑, i = 1, 3) ∫ ∫TiC f (x, y) d x d y = frac(1, 3) ∫ ∫T G (X, Y) d X d Y,where G (X, Y) = ∑i = 1n × n f (xiC (X, Y), yiC (X, Y)) and x = xiC (X, Y) and y = yiC (X, Y) refer to affine transformations which map each TiC into T the standard triangular surface. We then write ∫ ∫T G (X, Y) d X d Y = ∫ ∫S G (X (ξ, η), Y (ξ, η)) frac(∂ (X, Y), ∂ (ξ, η)) d ξ d η and a composite rule of integration is thus obtained. We next propose the discretisation of the standard triangular surface T into n2 right isosceles triangular surfaces Ti(i = 1 (1) n2) each of which has an area equal to 1 / (2 n2) units. We have again shown that the use of affine transformation over each Ti and the use of linearity property of integrals lead to the result:∫ ∫T f (x, y) d x d y = underover(∑, i = 1, n × n) ∫ ∫Ti f (x, y) d x d y = frac(1, n2) ∫ ∫T H (X, Y) d X d Y,where H (X, Y) = ∑i = 1n × n f (xi (X, Y), yi (X, Y)) and x = xi (X, Y), y = yi (X, Y) refer to affine transformations which map each Ti in (x, y) space into T a standard triangular surface T in the (x, y) space. We can now apply the two rules earlier derived to the integral ∫ ∫T H (X, Y) d X d Y, this amounts to application of composite numerical integration of T into n2 and 3n2 triangles of equal sizes respectively. We can now apply the rules, which are derived earlier to the evaluation of the integral, ∫ ∫T f (x, y) d x d y and each of these procedures converges to the exact value of the integral ∫ ∫T f (x, y) d x d y for sufficiently large value of n and the convergence is much faster for higher order rules. We have demonstrated this aspect by applying the above composite integration method to some typical integrals. © 2007 Elsevier Inc. All rights reserved.
机译:本文首先提出用于评估I =∫∫Tf(x,y)dxdy的高斯勒让德正交规则,其中f(x,y)是x,y的解析函数,T是标准三角形曲面: (x,y)|在两个空间(x,y)中,0≤x,y≤1,x + y≤1}。我们将此积分转换为等效积分∫∫Sf(x(ξ,η),y(ξ,η))frac(∂(x,y),∂(ξ,η))dξdη其中S为(ξ,η)空间中的2平方:{(ξ,η)| -1≤ξ,η≤1}。然后,我们在ξ和η变量中应用一维高斯勒让德正交规则,以获得具有新权重系数和新采样点的有效正交规则。然后获得复合类型的第二个高斯勒让德正交规则。通过将T离散为三个相等大小的新三角形TiC(i = 1,2,3)来推导此规则,这些三角形是通过将T的重心,C =(1/3,1/3)连接到T的三个顶点而获得的。通过使用在每个TiC上定义的仿射变换和积分的线性性质,得出以下结果:I = underover(∑,i = 1,3)∫∫TiCf(x,y)dxdy = frac(1,3) ∫∫TG(X,Y)d X d Y,其中G(X,Y)= ∑i = 1n×nf(xiC(X,Y),yiC(X,Y))和x = xiC(X,Y )和y = yiC(X,Y)表示仿射变换,该变换将每个TiC映射到标准三角形表面的T中。然后我们写出∫∫TG(X,Y)d X d Y =∫∫SG(X(ξ,η),Y(ξ,η))frac(∂(X,Y),∂(ξ,η)) dξdη,从而得到一个积分的合成规则。接下来,我们建议将标准三角形表面T离散为n2个等腰三角形三角形表面Ti(i = 1(1)n2),每个面积等于1 /(2 n2)个单位。我们再次证明对每个Ti使用仿射变换和积分的线性特性会导致以下结果:∫∫Tf(x,y)dxdy = underover(∑,i = 1,n×n)∫ ∫Tif(x,y)dxdy = frac(1,n2)∫∫TH(X,Y)d X d Y,其中H(X,Y)= ∑i = 1n×nf(xi(X,Y) ,yi(X,Y))和x = xi(X,Y),y = yi(X,Y)表示仿射变换,将(x,y)空间中的每个Ti映射到T中的标准三角形表面T (x,y)空间。现在,我们可以将前面导出的两个规则应用于积分∫∫TH(X,Y)d X d Y,这相当于将T的复合数值积分分别应用到大小相等的n2和3n2个三角形中。现在,我们可以应用较早的规则来评估积分∫∫Tf(x,y)dxdy,并且这些过程中的每一个都收敛到积分∫∫Tf(x,y)的精确值dxdy对于足够大的n值,对于高阶规则,收敛快得多。通过将上述复合积分方法应用于一些典型积分,我们已经证明了这一方面。 ©2007 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号