首页> 外文OA文献 >Determination of Intrinsic Material Flammability Properties from Material Tests assisted by Numerical Modelling
【2h】

Determination of Intrinsic Material Flammability Properties from Material Tests assisted by Numerical Modelling

机译:通过数值建模辅助的材料测试确定材料的固有易燃性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computational Fluid Dynamics (CFD) codes are being increasingly used in the field of fire safety engineering. They provide, amongst other things, velocity, species and heat flux distributions throughout the computational domain. The various sub-models associated with these have been developed sufficiently to reduce the errors below 10%-15%, and work continues on reducing these errors yet further. However, the uncertainties introduced by using material properties as an input for these models are considerably larger than those from the other sub-models, yet little work is being done to improve these.udMost of the data for these material properties comes from traditional (standard) tests. It is known that these properties are not intrinsic, but are test-specific. Thus, it can be expected that the errors incurred when using these in computations can be significant. Research has been held back by a lack of understanding of the basic factors that determine material flammability. The term “flammability” is currently used to encompass a number of definitions and “properties” that are linked to standardised test methodologies. In almost all cases, the quantitative manifestations of “flammability” are a combination of material properties and environmental conditions associated with the particular test method from which they were derived but are not always representative of parameters linked intrinsically with the tested material. The result is that even the best-defined parameters associated with flammability cannot be successfully introduced into fire models to predict ignition or fire growth.udThe aim of this work is to develop a new approach to the interpretation of standard flammability tests in order to derive the (intrinsic) material properties; specifically, those properties controlling ignition. This approach combines solid phase and gas modelling together with standard tests using computational fluid dynamics (CFD), mass fraction of flammable gases and lean flammability limits (LFL). The back boundary condition is also better defined by introducing a heat sink with a high thermal conductivity and a temperature dependant convective heat transfer coefficient. The intrinsic material properties can then be used to rank materials based on their susceptibility to ignition and, furthermore, can be used as input data for fire models.udExperiments in a standard test apparatus (FPA) were performed and the resulting data fitted to a complex pyrolysis model to estimate the (intrinsic) material properties. With these properties, it should be possible to model the heating process, pyrolysis, ignition and related material behaviour for any adequately defined heating scenario. This was achieved, within bounds, during validation of the approach in the Cone Calorimeter and under ramped heating conditions in the Fire Propagation Apparatus (FPA).udThis work demonstrates that standard flammability and material tests have been proven inadequate for the purpose of obtaining the “intrinsic” material properties required for pyrolysis models. A significant step has been made towards the development of a technique to obtain these material properties using test apparatuses, and to predict ignition of the tested materials under any heating scenario.udThis work has successfully demonstrated the ability to predict the driving force (in-depth temperature distribution) in the ignition process. The results obtained are very promising and serve to demonstrate the feasibility of the methodology. The essential outcomes are the “lessons learnt”, which themselves are of great importance to the understanding and further development of this technique. One of these lessons is that complex modelling in conjunction with current standard flammability test cannot currently provide all required parameters. The uncertainty of the results is significantly reduced when using independently determined parameters in the model. The intrinsic values of the material properties depend significantly on the accuracy of the model and precision of the data.
机译:计算流体动力学(CFD)代码正越来越多地用于消防安全工程领域。它们尤其提供了整个计算域中的速度,种类和热通量分布。已经开发出与之相关的各种子模型,足以将误差降低至10%-15%以下,并且继续致力于进一步降低这些误差。但是,通过使用材料属性作为这些模型的输入所带来的不确定性要比其他子模型大得多,但为改善这些不确定性所做的工作很少。 ud这些材料属性的大多数数据来自传统的(标准)测试。众所周知,这些属性不是固有的,而是特定于测试的。因此,可以预期的是,在计算中使用这些错误时可能会引起很大的误差。由于缺乏对决定材料易燃性的基本因素的理解,研究受到了阻碍。当前,术语“可燃性”用于包含与标准化测试方法相关的许多定义和“特性”。在几乎所有情况下,“可燃性”的定量表现是材料特性和与特定测试方法相关的环境条件的组合,从中可得出这些信息,但并不总是代表与测试材料固有联系的参数。结果是,即使是与可燃性相关的最佳定义参数也无法成功地引入到火模型中,以预测着火或火势的增长。 ud这项工作的目的是开发一种新的方法来解释标准可燃性测试,以便得出(固有的)材料特性;特别是那些控制着点火的特性。这种方法将固相和气体建模与使用计算流体力学(CFD),可燃气体的质量分数和稀薄易燃性限值(LFL)的标准测试结合在一起。通过引入具有高导热率和温度相关对流传热系数的散热器,也可以更好地定义后边界条件。然后,固有的材料特性可用于根据其易燃性对材料进行排名,此外,还可将其用作火灾模型的输入数据。 ud在标准测试设备(FPA)中进行了实验,并将结果数据拟合到复杂的热解模型以估算(本征)材料特性。具有这些特性,对于任何适当定义的加热方案,应该可以对加热过程,热解,着火和相关材料的行为进行建模。在锥形量热仪中验证方法期间以及在火焰传播设备(FPA)的倾斜加热条件下,这是在一定范围内实现的。 ud这项工作表明,事实证明,标准的可燃性和材料测试不足以获取燃料。热解模型所需的“本征”材料特性。在开发使用测试设备获得这些材料特性并预测在任何加热情况下被测试材料着火的技术方面,迈出了重要的一步。 ud这项工作已成功证明了预测驱动力的能力(包括深度温度分布)。获得的结果非常有希望,并有助于证明该方法的可行性。基本成果是“经验教训”,这些经验教训本身对于理解和进一步发展该技术非常重要。这些教训之一是,复杂的建模与当前的标准易燃性测试相结合目前无法提供所有必需的参数。当在模型中使用独立确定的参数时,结果的不确定性会大大降低。材料属性的内在值在很大程度上取决于模型的准确性和数据的准确性。

著录项

  • 作者

    Steinhaus Thomas;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号