首页> 外文OA文献 >An improvement in support vector machine classification model using grey relational analysis for cancer diagnosis
【2h】

An improvement in support vector machine classification model using grey relational analysis for cancer diagnosis

机译:基于灰色关联分析的支持向量机分类模型的改进

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To further improve the accuracy of classifier for cancer diagnosis, a hybrid model called GRA-SVM which comprises Support Vector Machine classifier and filter feature selection Grey Relational Analysis is proposed and tested against Wisconsin Breast Cancer Dataset (WBCD) and BUPA Disorder Dataset. The performance of GRA-SVM is compared to SVM’s in terms of accuracy, sensitivity, specificity and Area under Curve (AUC). The experimental results reveal that GRA-SVM improves the SVM accuracy of about 0.48 by using only two features for the WBCD dataset. For BUPA dataset, GRA-SVM improves the SVM accuracy of about 0.97 by using four features. Besides improving the accuracy performance, GRA-SVM also produces a ranking scheme that provides information about the priority of each feature. Therefore, based on the benefits gained, GRA-SVM is recommended as a new approach to obtain a better and more accurate result for cancer diagnosis.
机译:为了进一步提高分类器用于癌症诊断的准确性,提出了一种名为GRA-SVM的混合模型,该模型包括支持向量机分类器和过滤器特征选择灰色关联分析,并针对威斯康星州乳腺癌数据集(WBCD)和BUPA疾病数据集进行了测试。在准确性,灵敏度,特异性和曲线下面积(AUC)方面,将GRA-SVM的性能与SVM的性能进行了比较。实验结果表明,GRA-SVM通过仅对WBCD数据集使用两个特征,将SVM精度提高了约0.48。对于BUPA数据集,GRA-SVM通过使用四个功能将SVM精度提高了约0.97。除了提高准确性性能外,GRA-SVM还产生了一种排名方案,该方案提供了有关每个功能优先级的信息。因此,基于所获得的益处,推荐将GRA-SVM作为一种新方法,以获得更好,更准确的癌症诊断结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号