首页> 外文OA文献 >Wavelet and moment invariants based features selection using voronoi diagram for face recognition
【2h】

Wavelet and moment invariants based features selection using voronoi diagram for face recognition

机译:基于voronoi图的基于小波和矩不变性的特征选择

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Face recognition is a biometric authentication system for human security and personal identification that has become a field of interest in pattern recognition and computer vision societies in recent years as it has become increasingly important and commonly used for legal and personal identification in various fields such as visa information system, access control and multimedia search engines. However, distinct illumination, pose and blurring of facial images have become a big challenge in finding important facial features and facial representation in these fields. Therefore, this thesis proposes a facial recognition framework based on multi-feature selection approach. The framework in this thesis consists of eight stages: face preprocessing, segmentation, detection, cropping, transformation, extraction, classification and verification. The experiments were performed on gray scale frontal facial image with 750 images applied from three different standard facial databases namely BioID, ORL and Yale. In face segmentation, detection and cropping stages, Voronoi Diagram and Delaunay Triangulation methods have been applied. Wavelet transform and moment invariants methods have been used to extract facial image features. All features were fed into Radial Basis Function neural network for classification and verification purposes. The results show that a recognition accuracy rate of more than 92% has been achieved as compared to other proposed methods. Therefore, the framework in this thesis would be beneficial for the field of face authentication or verification due to its robustness and invariance to pose, illumination, and expression.
机译:人脸识别是一种用于人身安全和个人识别的生物特征认证系统,近年来,它已成为模式识别和计算机视觉社会的关注领域,因为它变得越来越重要,并广泛用于签证等各个领域的法律和个人识别信息系统,访问控制和多媒体搜索引擎。然而,在这些领域中寻找重要的面部特征和面部表示,面部图像的独特照明,姿势和模糊已经成为一个巨大的挑战。因此,本文提出了一种基于多特征选择方法的人脸识别框架。本文的框架由八个阶段组成:人脸预处理,分割,检测,裁剪,转换,提取,分类和验证。实验是在灰度正面图像上进行的,其中使用了来自三个不同标准面部数据库(即BioID,ORL和Yale)的750张图像。在面部分割,检测和裁剪阶段,已使用了Voronoi图和Delaunay三角剖分方法。小波变换和不变矩方法已被用于提取面部图像特征。所有特征都被输入到径向基函数神经网络中,以进行分类和验证。结果表明,与其他提出的方法相比,已经达到了92%以上的识别准确率。因此,本文的框架由于其鲁棒性和姿势,照明和表情的不变性,对于面部认证或验证领域将是有益的。

著录项

  • 作者

    Meethongjan Kittikhun;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号