首页> 外文OA文献 >Intelligent clustering with PCA and unsupervised learning algorithm in intrusion alert correlation
【2h】

Intelligent clustering with PCA and unsupervised learning algorithm in intrusion alert correlation

机译:PCA和无监督学习算法的智能集群在入侵警报关联中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As security threats advance in a drastic way, most of the organizations implement multiple Network Intrusion Detection Systems (NIDSs) to optimize detection and to provide comprehensive view of intrusion activities. But NIDSs trigger a massive amount of alerts even for a day and overwhelmed security experts. Thus, automated and intelligent clustering is important to reveal their structural correlation by grouping alerts with common attributes. We propose a new hybrid clustering model based on Improved Unit Range (IUR), Principal Component Analysis (PCA) and unsupervised learning algorithm (Expectation Maximization) to aggregate similar alerts and to reduce the number of alerts. We tested against other unsupervised learning algorithms to validate the performance of the proposed model. Our empirical results show using DARPA 2000 dataset the proposed model gives better results in terms of the clustering accuracy and processing time.
机译:随着安全威胁的急剧发展,大多数组织都实施了多个网络入侵检测系统(NIDS)以优化检测并提供入侵活动的全面视图。但是,NIDS即使一天仍会触发大量警报,并且使安全专家不知所措。因此,自动和智能集群对于通过将警报与通用属性进行分组来揭示其结构相关性很重要。我们提出了一种新的混合聚类模型,该模型基于改进的单位范围(IUR),主成分分析(PCA)和无监督学习算法(期望最大化)来聚合相似警报并减少警报数量。我们针对其他无监督学习算法进行了测试,以验证所提出模型的性能。我们的经验结果表明,使用DARPA 2000数据集,该模型在聚类精度和处理时间方面给出了更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号